The ESMF utilities are a set of tools for quickly assembling modeling applications. The Time Management Library provides utilities for time and date representation and calculation, and higher-level utilities that control model time stepping and alarming.
The Array class offers an efficient, language-neutral way of storing and manipulating data arrays.
The Communications/Memory/Kernel library provides utilities for isolating system-dependent functions to ease platform portability. It provides services to represent a particular machine's characteristics and to organize these into processor lists and layouts to allow for optimal allocation of resources to an ESMF component. Also provided is a unified interface for system-dependent communication services such as MPI or pthreads.
ESMF Configuration Management is based on NASA DAO's Inpak package, a collection of routines for accessing files containing input parameters stored in an ASCII format.
The Attribute class is used to hold the metadata for other ESMF objects. This class can be used to build Attribute hierarchies which connect the Attributes of different ESMF classes. The class is also capable of allowing the representation of standard Attribute packages for a more unified description of an object. All Attributes are consistent across the entire virtual machine of the object to which they are attached. This class is only partially implemented in this release.
Attributes are meant to be used as a tool for the user to help internally document their project. Several ESMF objects are allowed to have Attributes associated with them, these objects are the following:
Each Attribute contains a name-value pair in which the value can be any of several numeric, character, and logical types. See Figure 25 for the available Attribute value types. All Attributes also contain character strings specifying the convention, purpose, and object type of the Attribute for identification purposes - each of which is initialized as an empty string until specified otherwise. Each Attribute can be uniquely identified by its name, convention, purpose within any one ESMF object.
All Attributes contain three vectors of pointers to other Attributes, which are empty until specified otherwise. These vectors of Attribute pointers hold the Attributes, Attribute packages, and Attribute links. This feature is what allows the Attribute class to self assemble complex structures for representing and organizing the metadata of an ESMF object hierarchy.
Of the ESMF objects with Attributes, only some can link their Attributes together in an Attribute hierarchy. These objects are:
The most common use for this capability is for linking the Attributes of a Field to the FieldBundle which holds it, which is then linked to the State that is used to transport all of the data for a Component. All of these links, with the exception of the link between the Component and the State, are automatically handled by ESMF. In addition, the State will automatically set the import and export boolean valued Attributes that are part of the ESMF supplied standard Attribute package for Field when that Field is added to the State.
Attribute hierarchies are linked in a ``shallow" manner, meaning that the Attributes belonging to an external object are not copied, they are merely referenced by a pointer. This is important to ensure that the Attribute hierarchy has a one-to-one correspondence with the object hierarchy.
At this time, all ESMF objects which are enabled to contain Attributes can also contain Attribute packages. Every Attribute package is specified by a convention and a purpose, hereafter called specifiers, such as ``CF" (see below) and ``general". These specifiers are used to validate ESMF Attribute packages against existing metadata conventions. One can use an ESMF supplied standard Attribute package, specify their own Attribute packages, or add customized Attributes to the ESMF supplied Attribute packages. Currently, working with Attribute packages is quite involved, but future development with IO will allow for a more automated approach to populating Attribute packages from a file.
The standard Attribute packages supplied by ESMF exist for the following ESMF objects:
The ESMF standard Attribute packages are based on a blend of the Climate and Forecast (CF) and Earth System Grid (ESG) conventions. When additional Attributes beyond the ESMF supplied Attribute packages are desired, these can be generated with the Attribute package nesting capabilities. User supplied Attribute packages will also be an option in future releases. An example of some more standardized user supplied Attribute packages are in Tables 31.1.3 - 31.1.3, which summarize the Attribute packages available at this point in time.
Component Attribute Packages | ||
Convention | Purpose | Name |
ESMF | General | Component ESG General + |
ESG | General | Component CF General + |
Agency | ||
Author | ||
CodingLanguage | ||
Discipline | ||
FullName | ||
Institution | ||
ModelComponentFramework | ||
Name | ||
PhysicalDomain | ||
Version | ||
CF | General | Comment |
References |
State Attribute Packages | ||
Convention | Purpose | Name |
ESMF | General | Export |
Import |
Field Attribute Packages | ||
Convention | Purpose | Name |
ESMF | General | Field ESG General + |
ESG | General | Field CF Extended + |
Export | ||
Import | ||
CF | Extended | Field CF General + |
StandardName | ||
CF | General | LongName |
Name | ||
Units |
Array Attribute Packages | ||
Convention | Purpose | Name |
ESMF | General | Array ESG General + |
ESG | General | Array CF Extended + |
Export | ||
Import | ||
CF | Extended | Array CF General + |
StandardName | ||
CF | General | LongName |
Name | ||
Units |
Grid Attribute Packages | ||
Convention | Purpose | Name |
ESMF | General | Grid GridSpec General + |
GridSpec | General | CongruentTiles |
GridType | ||
DimOrder | ||
DiscretizationType | ||
GeometryType | ||
IsConformal | ||
IsPoleCovered | ||
IsRegular | ||
IsUniform | ||
NorthPoleLocation | ||
NumberOfCells | ||
NumDims | ||
NX | ||
NY | ||
NZ | ||
Resolution |
ESMF also allows nesting of Attribute packages. This capability is intended to help organize different metadata compliance levels, such as CF and ESG. The nesting of Attribute packages is also very helpful when adding customized Attributes to a package. The main use of the nesting capabilities of Attribute packages is geared towards organizing different metadata compliance levels. For instance, the CF metadata standard for Fields requires that there be Attributes to track the name, long_name, standard_name, and units of the Field. The ESG standard, on the other hand, requires two additional Attributes called import and export. In this case the ESMF representation of the ESG compliant Attribute package for a Field would involve a nested Attribute package structure. This would involve the ESG-specific Attribute package, containing the Attributes import and export containing a nested version of the CF-specific Attribute package, with the Attributes name, long_name, standard_name, and units. An Attribute package can be nested by including the specifiers of both packages in the ESMF_AttributeAdd() interface call.
The nesting capabilities of Attribute packages are also very useful for organizing the customized metadata supplied by a user. For example, if a user was not satisfied with the metadata support required in the ESG convention for Field they could supply a list of Attributes they would like to support. This new Attribute package would then be used as an additional layer, inside which the Attribute package of ESG would be nested, inside which the CF Attribute package would be nested. One important thing to remember when working with nested Attribute packages is that naming two Attributes the same in the same nested structure can yield undefined behavior.
An explanation of the specifiers is in order at this point. The purpose specifier is really just meant as an additional means, beyond the use of "convention", to specify Attribute packages. One could imagine that the CF convention would want to be able to have Attribute packages divided up in some fashion, which ESMF could then keep track of with the purpose specifier. It was added with the intention of allowing Attributes, and packages, maximum flexibility. Take the Field's ESMF standard Attribute package for example. This package is made up of three nested Attribute packages. The lowest one is made up of three Attributes with convention=CF and purpose=General. The next level contains one Attribute with convention=CF but purpose=Extended. On top of this is the convention=ESG package, also with purpose=General.
Each Attribute contains a name-value pair in which the value can be any of several numeric, character, and logical types. The allowable ESMF Attribute value types include:
The other members of the Attribute class can be seen in Figure 25 which shows a UML representation of the ESMF Attribute object. For a more detailed view of how Attribute packages and hierarchies are formed, see Figures 26 and 27, respectively.
This section describes the use of the Attribute class. There are seven examples that follow, which outline the use of Attributes at three increasing levels of difficulty. The first example covers basic Attribute manipulations on the gridded Component. The second example covers the Attribute package capabilities, including Attribute package nesting and Attribute hierarchy linking. The third example covers Attribute management in a distributed environment and the I/O utilities. These examples will be best understood if followed in an ascending order from basic to advanced. The last four examples cover setting of Attribute packages and custom Attributes from an XML file.
This example illustrates the most basic usage of the Attribute class. This demonstration of Attribute manipulation is limited to the gridded Component, but the same principles apply to the coupler Component, State, Grid, FieldBundle, Field, and Array. The functionality that is demonstrated includes setting and getting Attributes, working with Attributes with different types and lists, removing Attributes, and getting default Attributes. Various other uses of ESMF_AttributeGet() is covered in detail in the last section. The first thing we must do is declare variables and initialize ESMF.
! Use ESMF framework module use ESMF_Mod implicit none ! Local variables integer :: rc, finalrc, petCount, localPet, & itemCount, count type(ESMF_VM) :: vm type(ESMF_GridComp) :: gridcomp character(ESMF_MAXSTR) :: name integer(ESMF_KIND_I4) :: inI4 integer(ESMF_KIND_I4), dimension(3) :: inI4l integer(ESMF_KIND_I8) :: inI8 integer(ESMF_KIND_I8), dimension(3) :: inI8l real(ESMF_KIND_I4) :: inR4 real(ESMF_KIND_I4), dimension(3) :: inR4l real(ESMF_KIND_I8) :: inR8 real(ESMF_KIND_I8), dimension(3) :: inR8l character(ESMF_MAXSTR) :: inChar character(ESMF_MAXSTR), dimension(3) :: inCharl, & defaultCharl, dfltoutCharl character(ESMF_MAXSTR), dimension(8) :: outCharl logical :: inLog logical, dimension(3) :: inLogl, value type(ESMF_TypeKind) :: tk ! initialize ESMF finalrc = ESMF_SUCCESS call ESMF_Initialize(vm=vm, rc=rc) ! get the vm call ESMF_VMGet(vm, petCount=petCount, localPet=localPet, rc=rc) if (rc/=ESMF_SUCCESS) goto 10
We will construct the gridded Component which will be responsible for all of the Attributes we will be manipulating.
if (petCount<4) then gridcomp = ESMF_GridCompCreate(name="gridcomp", & petList=(/0/), rc=rc) else gridcomp = ESMF_GridCompCreate(name="gridcomp", & petList=(/0,1,2,3/), rc=rc) endif
We can set Attributes using the ESMF_AttributeSet() command. Attributes can be any of several different types, all of which are demonstrated here.
inI4 = 4 inI4l = (/1,2,3/) inI8 = 4 inI8l = (/1,2,3/) inR4 = 4 inR4l = (/1,2,3/) inR8 = 4 inR8l = (/1,2,3/) inChar = "Character string 4" inCharl = (/ "Character string 1", & "Character string 2", & "Character string 3" /) inLog = .true. inLogl = (/.true., .false., .true. /) call ESMF_AttributeSet(gridcomp, name="ESMF_I4name", value=inI4, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_I4namelist", & valueList=inI4l, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_I8name", value=inI8, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_I8namelist", & valueList=inI8l, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_R4name", value=inR4, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_R4namelist", & valueList=inR4l, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_R8name", value=inR8, rc=rc) call ESMF_AttributeSet(gridcomp, name="ESMF_R8namelist", & valueList=inR8l, rc=rc) call ESMF_AttributeSet(gridcomp, name="Character_name", & value=inChar, rc=rc) call ESMF_AttributeSet(gridcomp, name="Character_namelist", & valueList=inCharl, rc=rc) call ESMF_AttributeSet(gridcomp, name="Logical_name", value=inLog, rc=rc) call ESMF_AttributeSet(gridcomp, name="Logical_namelist", & valueList=inLogl, rc=rc)
We can retrieve Attributes by issuing the ESMF_AttributeGet() command. This command can also be used with an optional default value (or value list) so that if the Attribute is not found a value is returned without an error code. Removal of Attributes is also possible, and is demonstrated here as well. One of the Attributes previously created will be retrieved, then removed, then retrieved again using a default return value. In order to use the default return value capabilites, we must first set up a default parameter.
defaultCharl = (/ "Character string 4", & "Character string 5", & "Character string 6" /) itemCount=3 call ESMF_AttributeGet(gridcomp, name="Character_namelist", & valueList=outCharl(1:5), itemCount=itemCount, rc=rc) call ESMF_AttributeRemove(gridcomp, name="Character_namelist", rc=rc) call ESMF_AttributeGet(gridcomp, name="Character_namelist", & valueList=dfltoutCharl, defaultvalueList=defaultCharl,rc=rc)
There are more overloaded instances of ESMF_AttributeGet() which allow the retrieval of Attribute information by name or index number, or a query for the count of the Attributes on a certain object. These capabilities are demonstrated here by first retrieving the name of an Attribute using the index number, keep in mind that these index numbers start from 1. Then the name that is retrieved is used to get other information about the Attribute, such as the typekind, and the number of items in the value of the Attribute. This information is then used to actually retreive the Attribute value. Then the count of the number of Attributes on the object will be retrieved.
call ESMF_AttributeGet(gridcomp, attributeIndex=11 , name=name, rc=rc) call ESMF_AttributeGet(gridcomp, name=name, typekind=tk, & itemCount=itemCount, rc=rc) if (tk==ESMF_TYPEKIND_Logical .AND. itemCount==3) then call ESMF_AttributeGet(gridcomp, name=name, valueList=value, rc=rc) endif call ESMF_AttributeGet(gridcomp, count=count, rc=rc)
This example is slightly more complex than the example presented in section 31.3.1 and illustrates the use of the Attribute class to create Attribute hierarchies using Attribute packages. A gridded Component is used in conjunction with two States, a FieldBundle, and various realistic Fields to create an Attribute hierarchy and copy it from one State to another. Attributes packages are created on the Component and Fields, and the standard Attributes in each package are used in the Attribute hierarchy. The Attribute package nesting capability is demonstrated by nesting the standard ESMF supplied packages for the Fields inside a user specified Attribute package with a customized convention. The first thing we must do is declare variables and initialize ESMF.
! Use ESMF framework module use ESMF_Mod implicit none ! Local variables integer :: rc, finalrc, petCount, localPet type(ESMF_VM) :: vm type(ESMF_Field) :: DPEDT,DTDT,DUDT,DVDT,PHIS,QTR,CNV,CONVCPT,& CONVKE,CONVPHI type(ESMF_FieldBundle) :: fbundle type(ESMF_State) :: importState, exportState type(ESMF_GridComp) :: gridcomp character(ESMF_MAXSTR) :: name1,name2,name3,name4, & value1,value2,value3, value4, & convESMF,convCC,purpGen character(ESMF_MAXSTR),dimension(2) :: attrList ! initialize ESMF finalrc = ESMF_SUCCESS call ESMF_Initialize(vm=vm, rc=rc) ! get the vm call ESMF_VMGet(vm, petCount=petCount, localPet=localPet, rc=rc) if (rc/=ESMF_SUCCESS) goto 10
We must construct the ESMF objects that will be responsible for the Attributes we will be manipulating. These objects include the gridded Component, two States, a FieldBundle, and 10 Fields. In this trivial example we are constructing empty Fields with no underlying Grid.
if (petCount<4) then gridcomp = ESMF_GridCompCreate(name="gridded_component", & petList=(/0/), rc=rc) else gridcomp = ESMF_GridCompCreate(name="gridded_component", & petList=(/0,1,2,3/), rc=rc) endif importState = ESMF_StateCreate("importState", ESMF_STATE_IMPORT, rc=rc) exportState = ESMF_StateCreate("exportState", ESMF_STATE_EXPORT, rc=rc) DPEDT = ESMF_FieldCreateEmpty(name='DPEDT', rc=rc) DTDT = ESMF_FieldCreateEmpty(name='DTDT', rc=rc) DUDT = ESMF_FieldCreateEmpty(name='DUDT', rc=rc) DVDT = ESMF_FieldCreateEmpty(name='DVDT', rc=rc) PHIS = ESMF_FieldCreateEmpty(name='PHIS', rc=rc) QTR = ESMF_FieldCreateEmpty(name='QTR', rc=rc) CNV = ESMF_FieldCreateEmpty(name='CNV', rc=rc) CONVCPT = ESMF_FieldCreateEmpty(name='CONVCPT', rc=rc) CONVKE = ESMF_FieldCreateEmpty(name='CONVKE', rc=rc) CONVPHI = ESMF_FieldCreateEmpty(name='CONVPHI', rc=rc) fbundle = ESMF_FieldBundleCreate(name="fbundle", rc=rc)
Now we can add Attribute packages to all of the appropriate objects. We will use the ESMF supplied Attribute packages for the Fields and the Component. On the Fields, we will first use ESMF_AttributeAdd() to create standard Attribute packages, then we will nest customized Attribute packages around the ESMF standard Attribute packages. In this simple example the purpose for the Attribute packages will be specified as "General" in all cases.
convESMF = 'ESMF' convCC = 'CustomConvention' purpGen = 'General' attrList(1) = 'Coordinates' attrList(2) = 'Mask' ! DPEDT call ESMF_AttributeAdd(DPEDT, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(DPEDT, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! DTDT call ESMF_AttributeAdd(DTDT, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(DTDT, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! DUDT call ESMF_AttributeAdd(DUDT, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(DUDT, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! DVDT call ESMF_AttributeAdd(DVDT, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(DVDT, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! PHIS call ESMF_AttributeAdd(PHIS, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(PHIS, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! QTR call ESMF_AttributeAdd(QTR, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(QTR, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! CNV call ESMF_AttributeAdd(CNV, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(CNV, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! CONVCPT call ESMF_AttributeAdd(CONVCPT, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(CONVCPT, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! CONVKE call ESMF_AttributeAdd(CONVKE, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(CONVKE, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) ! CONVPHI call ESMF_AttributeAdd(CONVPHI, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeAdd(CONVPHI, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) call ESMF_AttributeAdd(gridcomp, convention=convESMF, & purpose=purpGen, rc=rc)
The standard Attribute package currently supplied by ESMF for Field contains 6 Attributes, 2 of which are set automatically. The remaining 4 Attributes in the standard Field Attribute package must be set manually by the user. We must also set the Attributes of our own custom Attribute package, which is built around the ESMF standard Attribute package.
name1 = 'Name' name2 = 'StandardName' name3 = 'LongName' name4 = 'Units' ! DPEDT value1 = 'DPEDT' value2 = 'tendency_of_air_pressure' value3 = 'Edge pressure tendency' value4 = 'Pa s-1' ! Custom Attributes call ESMF_AttributeSet(DPEDT, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(DPEDT, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(DPEDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DPEDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DPEDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DPEDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! DTDT value1 = 'DTDT' value2 = 'tendency_of_air_temperature' value3 = 'Delta-p weighted temperature tendency' value4 = 'Pa K s-1' ! Custom Attributes call ESMF_AttributeSet(DTDT, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(DTDT, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(DTDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DTDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DTDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DTDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! DUDT value1 = 'DUDT' value2 = 'tendency_of_eastward_wind' value3 = 'Eastward wind tendency' value4 = 'm s-2' ! Custom Attributes call ESMF_AttributeSet(DUDT, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(DUDT, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(DUDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DUDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DUDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DUDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! DVDT value1 = 'DVDT' value2 = 'tendency_of_northward_wind' value3 = 'Northward wind tendency' value4 = 'm s-2' ! Custom Attributes call ESMF_AttributeSet(DVDT, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(DVDT, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(DVDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DVDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DVDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(DVDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! PHIS value1 = 'PHIS' value2 = 'surface_geopotential' value3 = 'Surface geopotential height' value4 = 'm2 s-2' ! Custom Attributes call ESMF_AttributeSet(PHIS, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(PHIS, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(PHIS, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(PHIS, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(PHIS, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(PHIS, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! QTR value1 = 'QTR' value2 = '' value3 = 'Advected quantities' value4 = 'unknown' ! Custom Attributes call ESMF_AttributeSet(QTR, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(QTR, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(QTR, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(QTR, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(QTR, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(QTR, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! CNV value1 = 'CNV' value2 = 'atmosphere_kinetic_energy_content' value3 = 'Generation of atmosphere kinetic energy content' value4 = 'W m-2' ! Custom Attributes call ESMF_AttributeSet(CNV, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(CNV, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(CNV, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CNV, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CNV, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CNV, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! CONVCPT value1 = 'CONVCPT' value2 = '' value3 = 'Vertically integrated enthalpy convergence' value4 = 'W m-2' ! Custom Attributes call ESMF_AttributeSet(CONVCPT, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVCPT, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(CONVCPT, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVCPT, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVCPT, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVCPT, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! CONVKE value1 = 'CONVKE' value2 = '' value3 = 'Vertically integrated kinetic energy convergence' value4 = 'W m-2' ! Custom Attributes call ESMF_AttributeSet(CONVKE, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVKE, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(CONVKE, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVKE, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVKE, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVKE, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc) ! CONVPHI value1 = 'CONVPHI' value2 = '' value3 = 'Vertically integrated geopotential convergence' value4 = 'W m-2' ! Custom Attributes call ESMF_AttributeSet(CONVPHI, name='Coordinates', value='latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVPHI, name='Mask', value='yes', & convention=convCC, purpose=purpGen, rc=rc) ! ESMF Attributes call ESMF_AttributeSet(CONVPHI, name1, value1, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVPHI, name2, value2, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVPHI, name3, value3, convention=convESMF, & purpose=purpGen, rc=rc) call ESMF_AttributeSet(CONVPHI, name4, value4, convention=convESMF, & purpose=purpGen, rc=rc)
The standard Attribute package currently supplied by ESMF for Component contains 10 Attributes. These Attributes conform to both the ESG and CF conventions, and must be set manually.
call ESMF_AttributeSet(gridcomp, 'Agency', 'NASA', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'Author', 'Max Suarez', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'CodingLanguage', & 'Fortran 90', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'Discipline', & 'Atmosphere', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'FullName', & 'Goddard Earth Observing System Version 5 Finite Volume Dynamical Core', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'ModelComponentFramework', & 'ESMF', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'Name', 'GEOS-5 FV dynamical core', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'PhysicalDomain', & 'Earth system', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp, 'Version', & 'GEOSagcm-EROS-beta7p12', convention=convESMF, purpose=purpGen, rc=rc)
Adding the Fields to the FieldBundle will automatically ``link" the Attribute hierarchies. The same type of link will be generated when adding a FieldBundle to a State.
call ESMF_FieldBundleAdd(fbundle, DPEDT, rc=rc) call ESMF_FieldBundleAdd(fbundle, DTDT, rc=rc) call ESMF_FieldBundleAdd(fbundle, DUDT, rc=rc) call ESMF_FieldBundleAdd(fbundle, DVDT, rc=rc) call ESMF_FieldBundleAdd(fbundle, PHIS, rc=rc) call ESMF_FieldBundleAdd(fbundle, QTR, rc=rc) call ESMF_FieldBundleAdd(fbundle, CNV, rc=rc) call ESMF_FieldBundleAdd(fbundle, CONVCPT, rc=rc) call ESMF_FieldBundleAdd(fbundle, CONVKE, rc=rc) call ESMF_FieldBundleAdd(fbundle, CONVPHI, rc=rc) call ESMF_StateAdd(exportState, fieldbundle=fbundle, rc=rc)
The link between a State and the Component of interest must be set manually.
call ESMF_AttributeLink(gridcomp, exportState, rc=rc)
There are currently two different formats available for writing the contents of the Attribute packages in an Attribute hierarchy. There is an XML formatted write, which generates an .xml file in the execution directory with the contents of the write. There is also a tab-delimited write which writes to standard out, a file generated in the execution directory with the extension .stdout. Either of the ESMF_AttributeWrite() formats can be called on any of the objects which are capable of manipulating Attributes, but only from objects in an Attribute hierarchy which contain ESMF standard Attribute packages can it be confirmed that any relevant information be written. The ESMF_AttributeWrite() capability is only functional for single-item Attributes at this point, it will be more robust in future releases. A flag is used to specify which format to write, the default is tab-delimited.
call ESMF_AttributeWrite(gridcomp,convESMF,purpGen, & attwriteflag=ESMF_ATTWRITE_XML,rc=rc) call ESMF_AttributeWrite(gridcomp,convESMF,purpGen,rc=rc)
This advanced example illustrates the proper methods of Attribute manipulation in a distributed environment to ensure consistency of metadata across the VM. This example is much more complicated than the previous two because we will be following the flow of control of a typical model run with two gridded Components and one coupling Component. We will start out in the application driver, declaring Components, States, and the routines used to initialize, run and finalize the user's model Components. Then we will follow the control flow into the actual Component level through initialize, run, and finalize examining how Attributes are used to organize the metadata.
This example follows a simple user model with two gridded Components and one coupling Component. The initialize routines are used to set up the application data and the run routines are used to manipulate the data. Accordingly, most of the Attribute manipulation will take place in the initialize phase of each of the three Components. The two gridded Components will be running on exclusive pieces of the VM and the coupler Component will encompass the entire VM so that it can handle the Attribute communications.
The control flow of this example will start in the application driver, after which it will complete three cycles through the three Components. The first cycle will be through the initialize routines, from the first gridded Component to the second gridded Component to the coupler Component. The second cycle will go through the run routines, from the first gridded Component to the coupler Component to the second Gridded component. The third cycle will be through the finalize routines in the same order as the first cycle.
The first thing we must do is declare variables and initialize ESMF in the application driver.
integer :: rc, finalrc, petCount, localPet type(ESMF_VM) :: vm type(ESMF_State) :: c1exp, c2imp type(ESMF_GridComp) :: gridcomp1 type(ESMF_GridComp) :: gridcomp2 type(ESMF_CplComp) :: cplcomp character(ESMF_MAXSTR) :: convESMF,purpGen finalrc = ESMF_SUCCESS call ESMF_Initialize(vm=vm, rc=rc) call ESMF_VMGet(vm, petCount=petCount, localPet=localPet, rc=rc) if (rc/=ESMF_SUCCESS) print *, "ERROR!"
Still in the application driver, we must now construct some ESMF objects, such as the gridded Components, the coupler Component, and the States. This is also where it is determined which subsets of the PETs of the VM the Components will be using to run their initialize, run, and finalize routines.
gridcomp1 = ESMF_GridCompCreate(name="gridcomp1", & petList=(/0,1/), rc=rc) gridcomp2 = ESMF_GridCompCreate(name="gridcomp2", & petList=(/2,3/), rc=rc) cplcomp = ESMF_CplCompCreate(name="cplcomp", & petList=(/0,1,2,3/), rc=rc) c1exp = ESMF_StateCreate("Comp1 exportState", & ESMF_STATE_EXPORT, rc=rc) c2imp = ESMF_StateCreate("Comp2 importState", & ESMF_STATE_IMPORT, rc=rc)
Before the individual components are initialized, run, and finalized Attributes should be set at the Component level. Here we are going to use the ESG Attribute package on the first gridded Component. The Attribute package is added, and then each of the Attributes is set. The Attribute hierarchy of the Component is then linked to the Attribute hierarchy of the export State in a manual fashion.
convESMF = 'ESMF' purpGen = 'General' call ESMF_AttributeAdd(gridcomp1, convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'Agency', 'NASA', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'Author', 'Max Suarez', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'CodingLanguage', & 'Fortran 90', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'Discipline', & 'Atmosphere', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'FullName', & 'Goddard Earth Observing System Version 5 Finite Volume Dynamical Core', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'ModelComponentFramework', & 'ESMF', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'Name', 'GEOS-5 FV dynamical core', & convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'PhysicalDomain', & 'Earth system', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeSet(gridcomp1, 'Version', & 'GEOSagcm-EROS-beta7p12', convention=convESMF, purpose=purpGen, rc=rc) call ESMF_AttributeLink(gridcomp1, c1exp, rc=rc)
Now the individual Components will be run. First we will initialize the two gridded Components, then we will initialize the coupler Component. During each of these Component initialize routines Attribute packages will be added, and the Attributes set. The Attribute hierarchies will also be linked. As the gridded Components will be running on exclusive portions of the VM, the Attributes will need to be made available across the VM using an ESMF_StateReconcile() call in the coupler Component. The majority of the work with Attributes will take place in this portion of the model run, as metadata rarely needs to be changed during run time.
What follows are the calls from the driver code that run the initialize, run, and finalize routines for each of the Components. After these calls we will step through the first cycle as explained in the introduction, through the intialize routines of gridded Component 1 to gridded Component 2 to the coupler Component.
call ESMF_GridCompInitialize(gridcomp1, exportState=c1exp, rc=rc) call ESMF_GridCompInitialize(gridcomp2, importState=c2imp, rc=rc) call ESMF_CplCompInitialize(cplcomp, importState=c1exp, & exportState=c2imp, rc=rc) call ESMF_GridCompRun(gridcomp1, exportState=c1exp, rc=rc) call ESMF_CplCompRun(cplcomp, importState=c1exp, & exportState=c2imp, rc=rc) call ESMF_GridCompRun(gridcomp2, importState=c2imp, rc=rc) call ESMF_GridCompFinalize(gridcomp1, exportState=c1exp, rc=rc) call ESMF_GridCompFinalize(gridcomp2, importState=c2imp, rc=rc) call ESMF_CplCompFinalize(cplcomp, importState=c1exp, & exportState=c2imp, rc=rc)
In the first gridded Component initialize routine we need to create some Attribute packages and set all of the Attributes. These Attributes will be attached to realistic Fields, containing a Grid, which are contained in a FieldBundle. The first thing to do is declare variables and make the Grid.
type(ESMF_VM) :: vm integer :: petCount, status, myPet character(ESMF_MAXSTR) :: name1,name2,name3,name4,value1,value2, & value3,value4,convESMF,purpGen,convCC type(ESMF_ArraySpec) :: arrayspec type(ESMF_Grid) :: grid type(ESMF_Field) :: DPEDT,DTDT,DUDT,DVDT,PHIS,QTR,CNV,CONVCPT, & CONVKE,CONVPHI type(ESMF_FieldBundle) :: fbundle character(ESMF_MAXSTR),dimension(2) :: attrList rc = ESMF_SUCCESS call ESMF_GridCompGet(comp, vm=vm, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc) if (rc/=ESMF_SUCCESS) return grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxIndex=(/100,150/), & regDecomp=(/1,petCount/), & gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/0,0/), & indexflag=ESMF_INDEX_GLOBAL, rc=rc) if (rc/=ESMF_SUCCESS) return
This first bit is a verification that the ESMF_StateReconcile() call will correctly reconcile Attributes and Attribute packages that are attached to the top level State in an Attribute hierarchy. During the initialize phase of the coupler Component, the structure of these Attributes should be reconciled across the VM. The value of the Attributes in this structure are not guaranteed after the completion of ESMF_StateReconcile(), as that is the responsibility of the ESMF_AttributeUpdate() call. There will be more on this subject when we get to the coupler Component.
call ESMF_AttributeSet(exportState, name="TESTESTEST", & value="SUCCESUCCESUCCES", rc=status) if (status .ne. ESMF_SUCCESS) return
At this point the Fields will need to have Attribute packages attached to them, and the Attributes will be set with appropriate values. This process is quite involved at present, but will be more streamlined with the addition of the ESMF I/O class.
convCC = 'CustomConvention' convESMF = 'ESMF' purpGen = 'General' name1 = 'Name' name2 = 'StandardName' name3 = 'LongName' name4 = 'Units' value1 = 'DPEDT' value2 = 'tendency_of_air_pressure' value3 = 'Edge pressure tendency' value4 = 'Pa s-1' DPEDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(DPEDT, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(DPEDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DPEDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DPEDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DPEDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'DTDT' value2 = 'tendency_of_air_temperature' value3 = 'Delta-p weighted temperature tendency' value4 = 'Pa K s-1' DTDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(DTDT, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(DTDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DTDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DTDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DTDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'DUDT' value2 = 'tendency_of_eastward_wind' value3 = 'Eastward wind tendency' value4 = 'm s-2' DUDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(DUDT, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(DUDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DUDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DUDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DUDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'DVDT' value2 = 'tendency_of_northward_wind' value3 = 'Northward wind tendency' value4 = 'm s-2' DVDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(DVDT, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(DVDT, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DVDT, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DVDT, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(DVDT, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'PHIS' value2 = 'surface_geopotential' value3 = 'Surface geopotential height' value4 = 'm2 s-2' PHIS = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(PHIS, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(PHIS, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(PHIS, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(PHIS, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(PHIS, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'QTR' value2 = '' value3 = 'Advected quantities' value4 = 'unknown' QTR = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(QTR, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(QTR, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(QTR, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(QTR, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(QTR, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'CNV' value2 = 'atmosphere_kinetic_energy_content' value3 = 'Generation of atmosphere kinetic energy content' value4 = 'W m-2' CNV = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(CNV, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(CNV, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CNV, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CNV, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CNV, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'CONVCPT' value2 = '' value3 = 'Vertically integrated enthalpy convergence' value4 = 'W m-2' CONVCPT = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(CONVCPT, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(CONVCPT, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVCPT, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVCPT, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVCPT, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'CONVKE' value2 = '' value3 = 'Vertically integrated kinetic energy convergence' value4 = 'W m-2' CONVKE = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(CONVKE, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(CONVKE, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVKE, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVKE, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVKE, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return value1 = 'CONVPHI' value2 = '' value3 = 'Vertically integrated geopotential convergence' value4 = 'W m-2' CONVPHI = ESMF_FieldCreate(grid, arrayspec=arrayspec, & staggerloc=ESMF_STAGGERLOC_CENTER, rc=status) call ESMF_AttributeAdd(CONVPHI, convention=convESMF, purpose=purpGen, & rc=status) call ESMF_AttributeSet(CONVPHI, name1, value1, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVPHI, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVPHI, name3, value3, convention=convESMF, & purpose=purpGen, rc=status) call ESMF_AttributeSet(CONVPHI, name4, value4, convention=convESMF, & purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return ! Create the Grid Attribute Package call ESMF_AttributeAdd(grid,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'DimOrder','YX',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'GridType','Cubed sphere',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'CongruentTiles',.true.,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NorthPoleLocation','long: 0.0 lat: 90.0',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NumberOfCells','53457',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NumDims','2',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NX','96',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NY','96',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'NZ','15',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'Resolution','C48',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'IsConformal',.false.,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'IsRegular',.false.,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'IsUniform',.false.,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'IsPoleCovered',.true.,convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'DiscretizationType','Logically Rectangular',convention=convESMF, purpose=purpGen, rc=status) call ESMF_AttributeSet(grid,'GeometryType','Sphere',convention=convESMF, purpose=purpGen, rc=status) if (status .ne. ESMF_SUCCESS) return
Now the Fields will be added to the FieldBundle, at which point the Attribute hierarchies of the Fields will also be attached to the Attribute hierarchy of the FieldBundle. After that, the FieldBundle will be attached to the export State, again at which time the Attribute hierarchy of the FieldBundle will be attached to the Attribute hierarchy of the export State.
fbundle = ESMF_FieldBundleCreate(name="fbundle", rc=status) call ESMF_FieldBundleSetGrid(fbundle, grid=grid, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_FieldBundleAdd(fbundle, DPEDT, rc=status) call ESMF_FieldBundleAdd(fbundle, DTDT, rc=status) call ESMF_FieldBundleAdd(fbundle, DUDT, rc=status) call ESMF_FieldBundleAdd(fbundle, DVDT, rc=status) call ESMF_FieldBundleAdd(fbundle, PHIS, rc=status) call ESMF_FieldBundleAdd(fbundle, QTR, rc=status) call ESMF_FieldBundleAdd(fbundle, CNV, rc=status) call ESMF_FieldBundleAdd(fbundle, CONVCPT, rc=status) call ESMF_FieldBundleAdd(fbundle, CONVKE, rc=status) call ESMF_FieldBundleAdd(fbundle, CONVPHI, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_StateAdd(exportState, fieldbundle=fbundle, rc=status) if (status .ne. ESMF_SUCCESS) return
At this point, the driver of the model run will transfer control to the initialize phase of the second gridded Component.
In the second gridded Component initialize routine we don't have anything to do. The data that was created in the initialize routine of the first gridded Component will be passed to this Component through the coupler Component. The data will not be used in this Component until the run phase of the model. So now the application driver transfers control to the initialize phase of the coupler Component.
In the coupler Component initialize routine all that is required is to ensure consistent data across the VM. The data created in the first gridded Component on one set of the PETs in the VM is intended to be read and manipulated by the second gridded Component which runs on an exclusive set of the PETs of the VM for this application. We need to first make that data consistent across the entire VM with the ESMF_StateReconcile() call. This State level call handles both the data - Fields and FieldBundles, and the metadata - Attribute and Attribute packages. There is a flag in this call to allow the user to specify whether they want the metadata to be reconciled or not.
type(ESMF_VM) :: vm rc = ESMF_SUCCESS call ESMF_CplCompGet(comp, vm=vm, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_StateReconcile(importState, vm, attreconflag=ESMF_ATTRECONCILE_ON, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_StateReconcile(exportState, vm, attreconflag=ESMF_ATTRECONCILE_ON, rc=rc) if (rc/=ESMF_SUCCESS) return
At this point, the driver of the model run will transfer control to the run phase of the first gridded Component.
In the run phase of the first gridded Component is typically where the data contained in the Fields is manipulated. For this simple example we will do no actual data manipulation because all we are interested in at this point is the metadata. What we will do is add a nested Attribute package inside the currently existing Attribute package on each Field. We will also change the value of one of the Attributes in the original Attribute package, and remove another of the Attributes from the original Attribute package on each of the Fields. The first thing is to declare variables and get the Component, VM, State, and FieldBundle.
type(ESMF_VM) :: vm integer :: petCount, status, myPet, k character(ESMF_MAXSTR) :: name2,value2,convESMF,convCC,purpGen,name3 character(ESMF_MAXSTR),dimension(2) :: attrList type(ESMF_Field) :: field type(ESMF_FieldBundle) :: fbundle type(ESMF_Grid) :: grid rc = ESMF_SUCCESS convESMF = 'ESMF' convCC = 'CustomConvention' purpGen = 'General' name2 = 'StandardName' value2 = 'default_standard_name' name3 = 'LongName' attrList(1) = 'coordinates' attrList(2) = 'mask' call ESMF_GridCompGet(comp, vm=vm, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_StateGet(exportState, "fbundle", fbundle, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_FieldBundleGet(fbundle, grid=grid, rc=rc) if (rc/=ESMF_SUCCESS) return
At this point we will extract each of the Fields in the FieldBundle in turn and change the value of one Attribute in the original Attribute package, add a nested Attribute package, and delete one other of the Attributes in the original Attribute package. These three changes represent, respectively, a value change and two structural changes to the Attribute hierarchy during run time, which must be reconciled across the VM before the second gridded Component can be allowed to further manipulate the Attribute hierarchy.
do k = 1, 10 call ESMF_FieldBundleGet(fbundle, fieldIndex=k, field=field, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_AttributeSet(field, name2, value2, convention=convESMF, & purpose=purpGen, rc=status) if (rc/=ESMF_SUCCESS) return call ESMF_AttributeAdd(field, convention=convCC, purpose=purpGen, & attrList=attrList, nestConvention=convESMF, nestPurpose=purpGen, rc=rc) call ESMF_AttributeSet(field, name='Coordinates', value='Latlon', & convention=convCC, purpose=purpGen, rc=rc) call ESMF_AttributeSet(field, name='Mask', value='Yes', & convention=convCC, purpose=purpGen, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_AttributeRemove(field, name=name3, convention=convESMF, & purpose=purpGen, rc=status) if (rc/=ESMF_SUCCESS) return enddo
At this point, the driver of the model run will transfer control to the run phase of the coupler Component.
In the run phase of the coupler Component we must now ensure that the entire VM again has a consistent view of the Attribute hierarchy. This is different from the communication done in the initialize phase of the model run because the only structural change that has occurred is in the Attribute hierarchy. Therefore an ESMF_AttributeUpdate() call can be used at this point to reconcile these changes. It should be noted that the ESMF_AttributeUpdate() call will reconcile value changes to the Attribute hierarchy as well as structural changes.
The first thing to do is to retrieve the Component, VM, and States. Then ESMF_AttributeUpdate() will be called on the import State to accomplish a VM wide communication. Afterwards, the Attribute hierarchy can be transfered, in a local sense, from the import State to the export State using an ESMF_AttributeCopy() call.
type(ESMF_VM) :: vm integer :: myPet integer, dimension(2) :: rootList rc = ESMF_SUCCESS call ESMF_CplCompGet(comp, vm=vm, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_VMGet(vm, localPet=myPet, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_StateGet(importState, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_StateGet(exportState, rc=rc) if (rc/=ESMF_SUCCESS) return rootList = (/0,1/) call ESMF_AttributeUpdate(importState, vm, rootList=rootList, rc=rc) if (rc/=ESMF_SUCCESS) return call ESMF_AttributeCopy(importState, exportState, & ESMF_ATTCOPY_HYBRID, ESMF_ATTTREE_ON, rc=rc) if (rc/=ESMF_SUCCESS) return
At this point the entire VM has a consistent view of the Attribute hierarchy that was recently modified during run time in the first gridded component and the driver of the model run will transfer control to the run phase of the second gridded Component.
In the run phase of the second gridded Component is normally where a user model would again manipulate the data it was given. In this simple example we are only dealing with the metadata, which has already been ensured for consistency across the VM, including the exclusive piece of which is being used in this Component. Therefore we are free to use the metadata as we wish, considering only that any changes we make to it during run time will have to first be reconciled before other parts of the VM can use them. However, this is not our concern at this point because we will now explore the capabilities of ESMF_AttributeWrite().
First we will get the Component and VM. Next we will use the writing capabilities of the Attribute class, soon to be replaced by the ESMF I/O class. We will first write out the Attribute hierarchy to an .xml file, after which we will write out the Attribute hierarchy to a more reader friendly tab-delimited format. Both of these write calls will output their respective data into files in the execution directory, in either a .xml or .stdout file.
type(ESMF_VM) :: vm integer :: petCount, status, myPet character(ESMF_MAXSTR) :: convESMF,purpGen rc = ESMF_SUCCESS call ESMF_GridCompGet(comp, vm=vm, rc=status) if (status .ne. ESMF_SUCCESS) return call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status) if (status .ne. ESMF_SUCCESS) return convESMF = 'ESMF' purpGen = 'General' if (myPet .eq. 2) then call ESMF_AttributeWrite(importState,convESMF,purpGen, & attwriteflag=ESMF_ATTWRITE_XML, rc=rc) call ESMF_AttributeWrite(importState,convESMF,purpGen,rc=rc) if (rc .ne. ESMF_SUCCESS) return endif
At this point the driver of the model run would normally transfer control to the finalize phase of the first gridded Component. However, there is not much of interest as far as metadata is concerned in this portion of the model run. So with that we will conclude this example.
! ESMF Framework module use ESMF_Mod implicit none ! local variables type(ESMF_GridComp) :: gridcomp character(ESMF_MAXSTR) :: attrvalue type(ESMF_VM) :: vm integer :: rc, petCount, localPet
! initialize ESMF call ESMF_Initialize(vm=vm, rc=rc)
! get the vm call ESMF_VMGet(vm, petCount=petCount, localPet=localPet, rc=rc)
if (petCount<4) then gridcomp = ESMF_GridCompCreate(name="gridcomp", & petList=(/0/), rc=rc) else gridcomp = ESMF_GridCompCreate(name="gridcomp", & petList=(/0,1,2,3/), rc=rc) endif
! Read an XML file to populate the ESG Attribute package of a GridComp. ! The file is validated against an internal, ESMF-supplied XSD file ! defining the standard ESG Component Attribute package (see file ! pathnames above). call ESMF_AttributeRead(comp=gridcomp, fileName="esmf_gridcomp.xml", rc=rc)
! Get ESG "Name" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Name', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "FullName" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='FullName', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "Agency" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Agency', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "Institution" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Institution', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "Version" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Version', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "Author" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Author', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "Discipline" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Discipline', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "PhysicalDomain" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='PhysicalDomain', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "CodingLanguage" Attribute from a GridComp Test call ESMF_AttributeGet(gridcomp, name='CodingLanguage', value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get ESG "ModelComponentFramework" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='ModelComponentFramework', & value=attrValue, & convention='ESG', purpose='General', rc=rc)
! Get CF "Comment" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='Comment', value=attrValue, & convention='CF', purpose='General', rc=rc)
! Get CF "References" Attribute from a GridComp call ESMF_AttributeGet(gridcomp, name='References', value=attrValue, & convention='CF', purpose='General', rc=rc)
call ESMF_GridCompDestroy(gridcomp, rc=rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
! ESMF Framework module use ESMF_Mod implicit none ! local variables type(ESMF_Field) :: field character(ESMF_MAXSTR) :: attrvalue type(ESMF_VM) :: vm integer :: rc
! initialize ESMF call ESMF_Initialize(vm=vm, rc=rc)
! Create a field field = ESMF_FieldCreateEmpty(name="field", rc=rc)
! Read an XML file to populate the CF Attribute package of a Field. ! The file is validated against an internal, ESMF-supplied XSD file ! defining the standard CF Attribute package (see file pathnames above). call ESMF_AttributeRead(field=field, fileName="esmf_field.xml", rc=rc)
! Get CF "Name" Attribute from a Field call ESMF_AttributeGet(field, name='Name', value=attrValue, & convention='CF', purpose='General', rc=rc)
! Get CF "StandardName" Attribute from a Field call ESMF_AttributeGet(field, name='StandardName', value=attrValue, & convention='CF', purpose='Extended', rc=rc)
! Get CF "LongName" Attribute from a Field call ESMF_AttributeGet(field, name='LongName', value=attrValue, & convention='CF', purpose='General', rc=rc)
! Get CF "Units" Attribute from a Field call ESMF_AttributeGet(field, name='Units', value=attrValue, & convention='CF', purpose='General', rc=rc)
call ESMF_FieldDestroy(field, rc=rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
! ESMF Framework module use ESMF_Mod implicit none ! local variables type(ESMF_Grid) :: grid character(ESMF_MAXSTR) :: attrvalue type(ESMF_VM) :: vm integer :: rc
! initialize ESMF call ESMF_Initialize(vm=vm, rc=rc)
! Create a grid grid = ESMF_GridCreateEmpty(rc=rc)
! Read an XML file to populate the GridSpec Attribute package of a Grid. ! The file is validated against an internal, ESMF-supplied XSD file ! defining the standard GridSpec Attribute package (see file pathnames ! above). call ESMF_AttributeRead(grid=grid, fileName="esmf_grid.xml", rc=rc)
! Get GridSpec "CongruentTiles" Attribute from a Grid call ESMF_AttributeGet(grid, name='CongruentTiles', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "GridType" Attribute from a Grid call ESMF_AttributeGet(grid, name='GridType', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "DimOrder" Attribute from a Grid call ESMF_AttributeGet(grid, name='DimOrder', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "DiscretizationType" Attribute from a Grid call ESMF_AttributeGet(grid, name='DiscretizationType', & value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "GeometryType" Attribute from a Grid call ESMF_AttributeGet(grid, name='GeometryType', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "IsConformal" Attribute from a Grid call ESMF_AttributeGet(grid, name='IsConformal', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "IsPoleCovered" Attribute from a Grid call ESMF_AttributeGet(grid, name='IsPoleCovered', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "IsRegular" Attribute from a Grid call ESMF_AttributeGet(grid, name='IsRegular', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "IsUniform" Attribute from a Grid call ESMF_AttributeGet(grid, name='IsUniform', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NorthPoleLocation" Attribute from a Grid call ESMF_AttributeGet(grid, name='NorthPoleLocation', & value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NumberOfCells" Attribute from a Grid call ESMF_AttributeGet(grid, name='NumberOfCells', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NumDims" Attribute from a Grid call ESMF_AttributeGet(grid, name='NumDims', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NX" Attribute from a Grid call ESMF_AttributeGet(grid, name='NX', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NY" Attribute from a Grid call ESMF_AttributeGet(grid, name='NY', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "NZ" Attribute from a Grid call ESMF_AttributeGet(grid, name='NZ', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
! Get GridSpec "Resolution" Attribute from a Grid call ESMF_AttributeGet(grid, name='Resolution', value=attrValue, & convention='GridSpec', purpose='General', rc=rc)
call ESMF_GridDestroy(grid, rc=rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
! ESMF Framework module use ESMF_Mod implicit none ! local variables type(ESMF_CplComp) :: cplcomp character(ESMF_MAXSTR) :: attrvalue type(ESMF_VM) :: vm integer :: rc, petCount, localPet
! initialize ESMF call ESMF_Initialize(vm=vm, rc=rc)
! get the vm call ESMF_VMGet(vm, petCount=petCount, localPet=localPet, rc=rc)
if (petCount<4) then cplcomp = ESMF_CplCompCreate(name="cplcomp", & petList=(/0/), rc=rc) else cplcomp = ESMF_CplCompCreate(name="cplcomp", & petList=(/0,1,2,3/), rc=rc) endif
! Read an XML file to decorate a Coupler Component with custom, ! user-defined attributes, and validate them against a corresponding ! XSD schema file (see file pathnames above). call ESMF_AttributeRead(comp=cplcomp, fileName="custom_cplcomp.xml", & schemaFileName="custom_cplcomp.xsd", rc=rc)
! Get custom "MyAttribute1" from CplComp call ESMF_AttributeGet(cplcomp, name='MyAttribute1', value=attrValue, rc=rc)
! Get custom "MyAttribute2" from CplComp call ESMF_AttributeGet(cplcomp, name='MyAttribute2', value=attrValue, rc=rc)
! Get custom "MyAttribute3" from CplComp call ESMF_AttributeGet(cplcomp, name='MyAttribute3', value=attrValue, rc=rc)
! Get custom "MyAttribute4" from CplComp call ESMF_AttributeGet(cplcomp, name='MyAttribute4', value=attrValue, rc=rc)
! Get custom "MyAttribute5" from CplComp call ESMF_AttributeGet(cplcomp, name='MyAttribute5', value=attrValue, rc=rc)
call ESMF_CplCompDestroy(cplcomp, rc=rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
The capabilities of the Attribute class which are still in the developmental stage are listed by category.
This section covers Attribute memory deallocation, the use of ESMF_AttributeGet(), Attribute package nesting capabilities, issues with Attributes in a distributed environment, and reading/writing of Attributes via XML files. Issues and procedures dealing with Attribute memory deallocation, using ESMF_AttributeGet() to retrieve Attribute lists, and nested Attribute package capabilities are discussed to help avoid misuse. The limitations with Attributes in a distributed environment are also discussed, with an outline of the future work to be done in this area.
The Attribute class presents a somewhat different paradigm with respect to memory deallocation than other ESMF objects. The ESMF_AttributeRemove() call can be issued to remove any Attribute from an ESMF object or an Attribute package on an ESMF object. This call is also enabled to remove entire Attribute packages with one call, which would remove any nested Attribute packages as well. The user is not required to remove all Attributes that are used in a model run. The entire Attribute hierarchy will be removed automatically by ESMF, provided the ESMF objects which contain them are properly destroyed.
The decision to remove either an Attribute or an Attribute package is made by calling ESMF_AttributeRemove() with the correct optional arguments. If an Attribute which is not associated with any Attribute package should be removed, then the call must be issued without a convention or purpose argument. If an Attribute in an Attribute package is to be removed, then the call should be issued with all three of name, convention, and purpose. Finally, if an entire Attribute package is to be removed the call should be issued with a convention and purpose, but no Attribute name.
The behavior of the ESMF_AttributeGet() routine,when retrieving an Attribute containing a value list, follows a slightly different convention than other similar ESMF routines. This routine requires the input of a Fortran array as a place to store the retrieved values of the Attribute list. If the array that is given is longer that the list of Attribute values, the first part of the array will be filled, leaving the extra space untouched. If, however the array passed in, is shorter than the number of Attribute values, the routine will exit with a return code which is not equal to ESMF_SUCCESS. It is suggested that if it is required by the user to use a Fortran array that is longer than the number of Attribute values returned, only the indices of the array which the user desires to be filled with retrieved Attribute values should be passed into the routine.
Similar behavior is exhibited with the defaultvalueList argument in the ESMF_AttributeGet() routine. The difference here is that if the valueList is shorter than the defaultvalueList only the appropriate values will be filed in, and the routine will exit without error. Likewise, if the valueList is longer than the defaultvalueList then the entire valueList will be populated with the beginning section of the defaultvalueList that is given.
There is a recommended practice when using nested Attribute packages to organize metadata conventions. The most general Attribute packages should always be added first, followed by the more specific ones. For instance, when adding Attribute packages to a Field, it is recommend that the CF convention be added first, followed by the ESG convention, followed by any additional customized Attribute packages.
At this time there are several ESMF supplied Attribute packages, with a convention of ESMF and a purpose of general. These Attribute packages are generated by calling ESMF_AttributeAdd() with the appropriate convention and purpose. The ESMF standard Attribute packages can be customized by nesting a custom Attribute package around them, they can also be modified in other ways but this is not suggested practice at this time.
Another consideration when using nested Attribute packages is to remember that when a nested Attribute package is removed every nested Attribute package below the point of removal will also be removed. Thus, by removing the ESG Attribute package on a Field, the CF and Attribute package will also be removed.
This section discusses the methods of building a consistent view of the metadata across the VM of a model run. To better explain the ESMF capabilities for ensuring the integrity of Attributes in a distributed environment, a small working vocabulary of ESMF Attributes will be presented. Three types of changes to an Attribute hierarchy need to be specified, these are: 1. link changes are structural links created when two separate Attribute hierarchies are linked, 2. structural changes are changes which occur when Attributes or Attribute packages are added or removed within a single level of an Attribute hierarchy, and 3. value changes occur when the value portion of any single Attribute is modified. These definitions will help to describe how ESMF_StateReconcile() and ESMF_AttributeUpdate() can be effectively used to ensure a consistent view of the metadata throughout a model run.
The ESMF_StateReconcile() call is used to create a consistent view of ESMF objects over the entire VM in the initialization phase of a model run. All Attributes that are attached to an ESMF object contained in the State, i.e. an object that is being reconciled, can also be reconciled. This is done by setting a flag in the ESMF_StateReconcile() call, see the State documentation for details. This means that, at the conclusion of ESMF_StateReconcile() there is a one-to-one correspondence between Attribute hierarchies and the ESMF objects they represent. This is the only place where link changes in an Attribute hierarchy can be resolved.
The ESMF_AttributeUpdate() call can be used any time during the run phase of a model to insure that either structural or value changes made to an Attribute hierarchy on a subset of the VM are consistently represented across the remainder of the VM. At this time, link changes cannot be resolved by ESMF_AttributeUpdate() as this would represent a departure from the one-to-one correspondence between the Attribute hierarchy and the ESMF objects it represents.
This call is similar to ESMF_StateReconcile() in that it must be called from a location that has a view of the entire VM across which to update the Attribute hierarchy, such as a coupler Component. The main difference is that ESMF_AttributeUpdate() operates only on the underlying Attribute hierarchy of the given ESMF object. The Attribute hierarchy may be updated as many times as necessary, this call is much more efficient than ESMF_StateReconcile() for this reason.
The specification of a list of PETs that are to be used as the basis for the update is a key feature of this interface. This allows a many-to-many communication, as well as the direct specification of which PETs are to be updated and which are to be used as the ``real'' values. One caveat with this routine is that upon completion the destination PETs will have all of the missing Attributes from the source PETs, but this is not true the other way around. This basically boils down to the fact that the end product of calling ESMF_AttributeUpdate() is not the union of the Attributes on both source and destination PETs. This can be achieved, however, by calling ESMF_AttributeUpdate() twice, once from source to destination, and then again from destination to source.
The ESMF_AttributeWrite() interface is used to write the contents of an Attribute package to a file. This routine can be called on any ESMF object that is capable of holding Attribute packages. It can also write out all Attributes in Attribute packages with the same specifiers throughout an entire ESMF object hierarchy. The files are written in either tab-delimited or XML format, which is controlled by an optional flag in the interface.
This interface is in limited form at the present time, as it can only be used reliably on the ESMF standard Attribute packages. Chances are that it will perform as expected for most Attribute packages, but for now it is only guaranteed for the ESMF standard Attribute packages. This routine is also not yet enabled to handle multi-valued Attributes. One thing to remember when using this interface is that if you are writing an Attribute package that contains nested Attribute packages then all Attribute nested below the top level Attribute package will be written.
The flag that is used to determine which format for writing the Attribute packages is called the ESMF_AttWriteFlag. It can take values of ESMF_ATTWRITE_TAB or ESMF_ATTWRITE_XML, where the default value is the former option. In both cases the write files will end up in the execution directory after they are written and closed. The tab-delimited file will have an ending of .stdout, and the XML file will have an ending of .xml. In both cases the file will be named for the name of the ESMF object from which ESMF_AttributeWrite() was called.
The ability to copy an Attribute hierarchy is limited at this time. The ESMF_AttributeCopy() routine can be used to locally copy an Attribute hierarchy between States. It is important to note that this is a local copy, and no inter-PET communication is carried out. Another thing to note is that when this functionality is based on a reference copy any further changes made to some portions of the original Attribute hierarchy will also affect the new Attribute hierarchy.
There are two flags in the ESMF_AttributeCopy() routine which specify which type of copy is desired. At this point there are only two different varieties of Attribute hierarchy copies available. One of the requires the ESMF_AttCopyFlag to be set to ESMF_ATTCOPY_VALUE and the ESMF_AttTreeFlag to be set to ESMF_ATTTREE_OFF. This does a copy of only the first level of an Attribute hierarchy, by value.
The second available copy can be applied by setting the ESMF_AttCopyFlag to ESMF_ATTCOPY_HYBRID and the ESMF_AttTreeFlag to ESMF_ATTTREE_ON. This copy is more of a hybrid approach of reference and value copies. In this case the Attributes which belong to the object being copied are actually copied in full (by value), while the Attributes which are linked to the object being copied are referenced by a pointer (by reference). This means that after copying an Attribute hierarchy from ESMF object A to ESMF object B with this approach, the changes made to the lower portion of either A or B's Attribute hierarchy will be reflected on both object A and object B.
The Xerces C++ library, v3.1.0 or better, is used to read and write XML files. More specifically, the SAX2 API is currently used, although future releases may also use the DOM API. The Xerces C++ website is http://xerces.apache.org/xerces-c/.
INTERFACE:
! Private name; call using ESMF_AttributeAdd() subroutine ESMF_AttAddPackStandard(<object>, convention, purpose, nestConvention, & nestPurpose, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: convention character (len = *), intent(in) :: purpose character (len = *), intent(in), optional :: nestConvention character (len = *), intent(in), optional :: nestPurpose integer, intent(out), optional :: rcDESCRIPTION:
Add an ESMF standard Attribute package. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeAdd() subroutine ESMF_AttAddPackCstm(<object>, convention, purpose, & attrList, count, nestConvention, nestPurpose, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose character (len=*), dimension(:), intent(in) :: attrList integer, intent(in), optional :: count character (len = *), intent(in), optional :: nestConvention character (len = *), intent(in), optional :: nestPurpose integer, intent(out), optional :: rcDESCRIPTION:
Add a custom Attribute package to <object>. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeCopy() subroutine ESMF_AttributeCopy(<object1>, <object2>, attcopyflag, atttreeflag, rc)ARGUMENTS:
<object1>, see below for supported values <object2>, see below for supported values type(ESMF_AttCopyFlag), intent(in) :: attcopyflag type(ESMF_AttTreeFlag), intent(in) :: atttreeflag integer, intent(out), optional :: rcDESCRIPTION:
Copy an Attribute hierarchy from <object1> to <object2>. Supported values for <object1> are:
NOTE: Copies between different ESMF objects are not possible at this time.
The arguments are:
NOTE: Not all combinations of copy flags are enabled at this time. See the reference manual for an overview of the options available for ESMF_AttributeCopy(). The options for attcopyflag include:
INTERFACE:
subroutine ESMF_AttributeGet(<object>, name, <value argument>, & <defaultvalue argument>, convention, purpose, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: name <value argument>, see below for supported values <defaultvalue argument>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(out), optional :: rcDESCRIPTION:
Return an Attribute value from the <object>, or from the Attribute package specified by convention and purpose. A default value argument may be given if a return code is not desired when the Attribute is not found. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
subroutine ESMF_AttributeGet(<object>, name, <valueList argument>, & <defaultvalueList argument>, convention, purpose, & itemCount, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: name <valueList argument>, see below for supported values <defaultvalueList argument>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(inout), optional :: itemCount integer, intent(out), optional :: rcDESCRIPTION:
Return an Attribute value from the <object>, or from the Attribute package specified by convention and purpose. A default value argument may be given if a return code is not desired when the Attribute is not found. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeGet() subroutine ESMF_AttributeGetCount(<object>, count, attcountflag, rc)ARGUMENTS:
<object>, see below for supported values integer, intent(out) :: count type(ESMF_AttCountFlag), intent(in), optional :: attcountflag integer, intent(out), optional :: rcDESCRIPTION:
Return the Attribute count for <object>. Supported values for <object> are:
The arguments are:
NOTE: The options for attcountflag include:
INTERFACE:
! Private name; call using ESMF_AttributeGet() subroutine ESMF_AttributeGetInfoByNam(<object>, name, typekind, itemCount, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: name type(ESMF_TypeKind), intent(out), optional :: typekind integer, intent(out), optional :: itemCount integer, intent(out), optional :: rcDESCRIPTION:
Return information associated with the named Attribute, including typekind and itemCount. Supported values for <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeGet() subroutine ESMF_AttributeGetInfoByNum(<object>, attributeIndex, name, & typekind, itemcount, rc)ARGUMENTS:
<object>, see below for supported values integer, intent(in) :: attributeIndex character (len = *), intent(out) :: name type(ESMF_TypeKind), intent(out), optional :: typekind integer, intent(out), optional :: itemCount integer, intent(out), optional :: rcDESCRIPTION:
Returns information associated with the indexed Attribute, including name, typekind and itemCount. Keep in mind that these indexes start from 1, as expected in a Fortran API. Supported values for <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLink() subroutine ESMF_CompAttLink(<object1>, <object2>, rc)ARGUMENTS:
<object1>, see below for supported values <object2>, see below for supported values integer, intent(out), optional :: rcDESCRIPTION:
Attach a CplComp or GridComp Attribute hierarchy to the hierarchy of a CplComp, GridComp, or State. Supported values for the <object1> are:
The arguments are:
hierarchy of a an Array, ArrayBundle, Field, FieldBundle, or State
INTERFACE:
! Private name; call using ESMF_AttributeLink() subroutine ESMF_StateAttLink(state, <object>, rc)ARGUMENTS:
type(ESMF\_State), intent(inout) :: state <object>, see below for supported values integer, intent(out), optional :: rcDESCRIPTION:
Attach a State Attribute hierarchy to the hierarchy of a Fieldbundle, Field, or another State. Supported values for the <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLink() subroutine ESMF_FieldBundleAttLink(fieldbundle, field, rc)ARGUMENTS:
type(ESMF\_FieldBundle), intent(inout) :: fieldbundle type(ESMF\_Field), intent(inout) :: field integer, intent(out), optional :: rcDESCRIPTION:
Attach a FieldBundle Attribute hierarchy to the hierarchy of a Field.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLink() subroutine ESMF_FieldAttLink(field, grid, rc)ARGUMENTS:
type(ESMF\_Field), intent(inout) :: field type(ESMF\_Grid), intent(inout) :: grid integer, intent(out), optional :: rcDESCRIPTION:
Attach a Field Attribute hierarchy to the hierarchy of a Grid.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLink() subroutine ESMF_ArrayBundleAttLink(arraybundle, array, rc)ARGUMENTS:
type(ESMF\_ArrayBundle), intent(inout) :: arraybundle type(ESMF\_Array), intent(inout) :: array integer, intent(out), optional :: rcDESCRIPTION:
Attach an ArrayBundle Attribute hierarchy to the hierarchy of an Array.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLinkRemove() subroutine ESMF_CompAttLinkRemove(<object1>, <object2>, rc)ARGUMENTS:
<object1>, see below for supported values <object2>, see below for supported values integer, intent(out), optional :: rcDESCRIPTION:
Unattach a CplComp or GridComp Attribute hierarchy from the hierarchy of a CplComp, GridComp, or State. Supported values for the <object1> are:
The arguments are:
the hierarchy of an Array, ArrayBundle, Field, FieldBundle, or State
INTERFACE:
! Private name; call using ESMF_AttributeLinkRemove() subroutine ESMF_StateAttLinkRemove(state, <object>, rc)ARGUMENTS:
type(ESMF\_State), intent(inout) :: state <object>, see below for supported values integer, intent(out), optional :: rcDESCRIPTION:
Unattach a State Attribute hierarchy from the hierarchy of a Fieldbundle, Field, or another State. Supported values for the <object> are:
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLinkRemove() subroutine ESMF_FieldBundleAttLinkRemove(fieldbundle, field, rc)ARGUMENTS:
type(ESMF\_FieldBundle), intent(inout) :: fieldbundle type(ESMF\_Field), intent(inout) :: field integer, intent(out), optional :: rcDESCRIPTION:
Unattach a FieldBundle Attribute hierarchy from the hierarchy of a Field.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLinkRemove() subroutine ESMF_FieldAttLinkRemove(field, grid, rc)ARGUMENTS:
type(ESMF\_Field), intent(inout) :: field type(ESMF\_Grid), intent(inout) :: grid integer, intent(out), optional :: rcDESCRIPTION:
Unattach a Field Attribute hierarchy from the hierarchy of a Grid.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AttributeLinkRemove() subroutine ESMF_ArrayBundleAttLinkRemove(arraybundle, array, rc)ARGUMENTS:
type(ESMF\_ArrayBundle), intent(inout) :: arraybundle type(ESMF\_Array), intent(inout) :: array integer, intent(out), optional :: rcDESCRIPTION:
Unattach an ArrayBundle Attribute hierarchy from the hierarchy of an Array.
The arguments are:
INTERFACE:
subroutine ESMF_AttributeRead(<object>, fileName, schemaFileName, & convention, purpose, rc)ARGUMENTS:
<object>, see below for supported values character (len=*), intent(in), optional :: fileName character (len=*), intent(in), optional :: schemaFileName character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(out), optional :: rcDESCRIPTION:
Read Attributes for <object> from fileName, whose format is XML. schemaFileName format is XSD. If present, the schemaFileName is used to validate the contents of fileName. schemaFileName must be specified for a fileName containing custom, user-defined Attributes. schemaFileName need not be specified for convention and purposes specifying a standard, ESMF-supplied Attribute package. If present, the convention and purpose specify an Attribute package which is used to filter the reading to just those attributes belonging to the Attribute package. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Requires the third party Xerces C++ XML Parser library to be installed, v3.1.0 or better. For more details, see the "ESMF Users Guide", "Building and Installing the ESMF, Third Party Libraries, Xerces" and the website "http://xerces.apache.org/xerces-c".
Supported values for <object> are:
The arguments are:
INTERFACE:
subroutine ESMF_AttributeRemove(<object>, name, convention, purpose, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in), optional :: name character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(out), optional :: rcDESCRIPTION:
Remove an Attribute, or Attribute package on <object>. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
NOTE: An entire Attribute package can be removed by specifying convention and purpose only, without name. By specifying convention, purpose, and name an Attribute will be removed from the corresponding Attribute package, if it exists. An Attribute can be removed directly from <object> by specifying name, without convention and purpose.
INTERFACE:
subroutine ESMF_AttributeSet(<object>, name, <value argument>, & convention, purpose, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: name <value argument>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(out), optional :: rcDESCRIPTION:
Attach an Attribute to <object>, or set an Attribute in an Attribute package. The Attribute has a name and either a value, and a convention and purpose. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
subroutine ESMF_AttributeSet(<object>, name, <valueList argument>, & convention, purpose, itemCount, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in) :: name <valueList argument>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose integer, intent(in), optional :: itemCount integer, intent(out), optional :: rcDESCRIPTION:
Attach an Attribute to <object>, or set an Attribute in an Attribute package. The Attribute has a name and a valueList, with an itemCount, and a convention and purpose. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:
The arguments are:
INTERFACE:
subroutine ESMF_AttributeUpdate(<object>, vm, rootList, rc)ARGUMENTS:
<object>, see below for supported values type(ESMF_VM), intent(in) :: vm integer, dimension(:), intent(in) :: rootList integer, intent(out), optional :: rcDESCRIPTION:
Update an Attribute hierarchy during runtime. Supported values for <object> are:
The arguments are:
INTERFACE:
subroutine ESMF_AttributeWrite(<object>, convention, purpose, attwriteflag, rc)ARGUMENTS:
<object>, see below for supported values character (len = *), intent(in), optional :: convention character (len = *), intent(in), optional :: purpose type(ESMF_AttWriteFlag), intent(in), optional :: attwriteflag integer, intent(out), optional :: rcDESCRIPTION:
Write the Attribute package for <object>. The Attribute package defines the convention, purpose, and object type of the associated Attributes. Either tab-delimited or xml format is acheived by using attwriteflag. See Section 31.1.3 for a description of Attribute packages and their conventions, purposes, and object types.
Note: For an object type of ESMF_GridComp, convention='WaterML', purpose='TimeSeries', and attwriteflag=ESMF_ATTWRITE_XML, an XML file conforming to a hydrologic standard called WaterML will be written. See the following for more information:
An ESMF Use Test Case is available which showcases an example of how to write a WaterML file; please see
Supported values for <object> are:
The arguments are:
NOTE: The options for attwriteflag include:
ESMF data types, such as Fields, FieldBundles, Arrays and ArrayBundles, are used to exchange data between Components through States. In the simplest scenario the producer Component or Coupler can compute the full data set required by the consumer Component. However, memory constraints or otherwise the nature of the algorithm, may require that the final calculation be performed right before the data is consumed.
ESMF provides the concept of Attachable Methods that allows a producer component to associate user defined methods with the data objects it provides. The final calculation, while defined by the producer Component, is deferred until the consumer Component requires its execution.
The current implementation of Attachable Methods is limited to the ESMF State class. States are a general container class for Fields, FieldBundles, Arrays and ArrayBundles. States provide the most general interface to Attachable Methods.
The following examples demonstrate how a producer Component attaches a user defined method to a State, and how it implements the method. The attached method is then executed by the consumer Component.
The producer Component attaches a user defined method to exportState during the Component's initialize method. The user defined method is attached with label finalCalculation by which it will become accessible to the consumer Component.
subroutine init(gcomp, importState, exportState, clock, rc) ! arguments type(ESMF_GridComp):: gcomp type(ESMF_State):: importState, exportState type(ESMF_Clock):: clock integer, intent(out):: rc call ESMF_MethodAdd(exportState, label="finalCalculation", & userRoutine=finalCalc, rc=rc) rc = 0 end subroutine !--------------------------------------------------------------
The producer Component implements the attached, user defined method finalCalc. Strict interface rules apply for the user defined method.
subroutine finalCalc(state, rc) ! arguments type(ESMF_State):: state integer, intent(out):: rc ! access data objects in state and perform calculation print *, "dummy output from attached method " rc = 0 end subroutine !--------------------------------------------------------------
The consumer Component executes the user defined method on the importState.
subroutine init(gcomp, importState, exportState, clock, rc) ! arguments type(ESMF_GridComp):: gcomp type(ESMF_State):: importState, exportState type(ESMF_Clock):: clock integer, intent(out):: rc integer:: userRc call ESMF_MethodExecute(importState, label="finalCalculation", & userRc=userRc, rc=rc) rc = 0 end subroutine !--------------------------------------------------------------
INTERFACE:
! Private name; call using ESMF_MethodAdd() subroutine ESMF_MethodAdd(state, label, userRoutine, rc)ARGUMENTS:
type(ESMF_State) :: state character(len=*), intent(in) :: label interface subroutine userRoutine(state, rc) use ESMF_StateMod implicit none type(ESMF_State) :: state ! must not be optional integer, intent(out) :: rc ! must not be optional end subroutine end interface integer, intent(out), optional :: rcDESCRIPTION:
Attach userRoutine.
The arguments are:
INTERFACE:
! Private name; call using ESMF_MethodAdd() subroutine ESMF_MethodAddShObj(state, label, userRoutine, sharedObj, rc)ARGUMENTS:
type(ESMF_State) :: state character(len=*), intent(in) :: label character(len=*), intent(in) :: userRoutine character(len=*), intent(in), optional :: sharedObj integer, intent(out), optional :: rcDESCRIPTION:
Attach userRoutine.
The arguments are:
INTERFACE:
subroutine ESMF_MethodExecute(state, label, userRc, rc)ARGUMENTS:
type(ESMF_State) :: state character(len=*), intent(in) :: label integer, intent(out), optional :: userRc integer, intent(out), optional :: rcDESCRIPTION:
Execute attached method.
The arguments are:
INTERFACE:
subroutine ESMF_MethodRemove(state, label, rc)ARGUMENTS:
type(ESMF_State) :: state character(len=*), intent(in) :: label integer, intent(out), optional :: rcDESCRIPTION:
Remove attached method.
The arguments are:
The ESMF Time Manager utility includes software for time and date representation and calculations, model time advancement, and the identification of unique and periodic events. Since multi-component geophysical applications often require synchronization across the time management schemes of the individual components, the Time Manager's standard calendars and consistent time representation promote component interoperability.
Key Features |
Drift-free timekeeping through an integer-based internal time representation. Both integers and reals can be specified at the interface. |
The ability to represent time as a rational fraction, to support exact timekeeping in applications that involve grid refinement. |
Support for many calendar types, including user-customized calendars. |
Support for both concurrent and sequential modes of component execution. |
Support for varying and negative time steps. |
In the remainder of this section, we briefly summarize the functionality that the Time Manager classes provide. Detailed descriptions and usage examples precede the API listing for each class.
TimeIntervals and Time instants (simply called Times) are the computational building blocks of the Time Manager utility. TimeIntervals support operations such as add, subtract, compare size, reset value, copy value, and subdivide by a scalar. Times, which are moments in time associated with specific Calendars, can be incremented or decremented by TimeIntervals, compared to determine which of two Times is later, differenced to obtain the TimeInterval between two Times, copied, reset, and manipulated in other useful ways. Times support a host of different queries, both for values of individual Time components such as year, month, day, and second, and for derived values such as day of year, middle of current month and Julian day. It is also possible to retrieve the value of the hardware realtime clock in the form of a Time. See Sections 35.1 and 36.1, respectively, for use and examples of Times and TimeIntervals.
Since climate modeling, numerical weather prediction and other Earth and space applications have widely varying time scales and require different sorts of calendars, Times and TimeIntervals must support a wide range of time specifiers, spanning nanoseconds to years. The interfaces to these time classes are defined so that the user can specify a time using a combination of units selected from the list shown in Table 33.4.
Unit | Meaning |
<yy|yy_i8> | Year. |
mm | Month of the year. |
dd | Day of the month. |
<d|d_i8|d_r8> | Julian or Modified Julian day. |
<h|h_r8> | Hour. |
<m|m_r8> | Minute. |
<s|s_i8|s_r8> | Second. |
<ms|ms_r8> | Millisecond. |
<us|us_r8> | Microsecond. |
<ns|ns_r8> | Nanosecond. |
O | Time zone offset in integer number of hours and minutes. |
<sN|sN_i8> | Numerator for times of the form s , where s is seconds and s, sN, and sD are integers. This format provides a mechanism for supporting exact behavior. |
<sD|sD_i8 | Denominator for times of the form s , where s is seconds and s, sN, and sD are integers. |
The result of this strategy is that Time Intervals and Times gain a consistent core representation of time as well a set of basic methods.
The BaseTime class can be designed with a minimum number of elements to represent any required time. The design is based on the idea used in the real-time POSIX 1003.1b-1993 standard. That is, to represent time simply as a pair of integers: one for seconds (whole) and one for nanoseconds (fractional). These can then be converted at the interface level to any desired format.
For ESMF, this idea can be modified and extended, in order to handle the requirements for a large time range (> 200,000 years) and to exactly represent any rational fraction, not just nanoseconds. To handle the large time range, a 64-bit or greater integer is used for whole seconds. Any rational fractional second is expressed using two additional integers: a numerator and a denominator. Both the whole seconds and fractional numerator are signed to handle negative time intervals and instants. For arithmetic consistency both must carry the same sign (both positve or both negative), except, of course, for zero values. The fractional seconds element (numerator) is bounded with respect to whole seconds. If the absolute value of the numerator becomes greater than or equal to the denominator, whole seconds are incremented or decremented accordingly and the numerator is reset to the remainder. Conversions are performed upon demand by interface methods within the TimeInterval and Time classes. This is done because different applications require different representations of time intervals and time instances. Floating point values as well as integers can be specified for the various time units in the interfaces, see Table 33.4. Floating point values are represented internally as integer-based rational fractions.
The BaseTime class defines increment and decrement methods for basic TimeInterval calculations between Time instants. It is done here rather than in the Calendar class because it can be done with simple second-based arithmetic that is calendar independent.
Comparison methods can also be defined in the BaseTime class. These perform equality/inequality, less than, and greater than comparisons between any two TimeIntervals or Times. These methods capture the common comparison logic between TimeIntervals and Times and hence are defined here for sharing.
The following is a simplified UML diagram showing the structure of the Time Manager utility. See Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their meaning.
The Calendar class represents the standard calendars used in geophysical modeling: Gregorian, Julian, Julian Day, Modified Julian Day, no-leap, 360-day, and no-calendar. It also supports a user-customized calendar. Brief descriptions are provided for each calendar below. For more information on standard calendars, see [29] and [22].
DESCRIPTION:
Supported calendar types.
Valid values are:
MJD = JD - 2400000.5
The half day is subtracted so that the day starts at midnight.
In most multi-component Earth system applications, the timekeeping in each component must refer to the same standard calendar in order for the components to properly synchronize. It therefore makes sense to create as few ESMF Calendars as possible, preferably one per application. A typical strategy would be to create a single Calendar at the start of an application, and use that Calendar in all subsequent calls that accept a Calendar, such as ESMF_TimeSet.
The following example shows how to set up an ESMF Calendar.
! !PROGRAM: ESMF_CalendarEx - Calendar creation examples ! ! !DESCRIPTION: ! ! This program shows examples of how to create different calendar types !----------------------------------------------------------------------------- ! ESMF Framework module use ESMF_Mod implicit none ! instantiate calendars type(ESMF_Calendar) :: gregorianCalendar type(ESMF_Calendar) :: julianDayCalendar ! local variables for Get methods integer(ESMF_KIND_I8) :: dl type(ESMF_Time) :: time ! return code integer:: rc
! initialize ESMF framework call ESMF_Initialize(rc=rc)
This example shows how to create two ESMF_Calendars.
! create a Gregorian calendar gregorianCalendar = ESMF_CalendarCreate("Gregorian", & ESMF_CAL_GREGORIAN, rc)
! create a Julian Day calendar julianDayCalendar = ESMF_CalendarCreate("JulianDay", & ESMF_CAL_JULIANDAY, rc)
This example shows how to compare an ESMF_Calendar with a known calendar type.
! compare calendar type against a known type if (gregorianCalendar == ESMF_CAL_GREGORIAN) then print *, "gregorianCalendar is of type ESMF_CAL_GREGORIAN." else print *, "gregorianCalendar is not of type ESMF_CAL_GREGORIAN." end if
This example shows how to convert a time from one ESMF_Calendar to another.
call ESMF_TimeSet(time, yy=2004, mm=4, dd=17, & calendar=gregorianCalendar, rc=rc)
! switch time's calendar to perform conversion call ESMF_TimeSet(time, calendar=julianDayCalendar, rc=rc)
call ESMF_TimeGet(time, d_i8=dl, rc=rc) print *, "Gregorian date 2004/4/17 is ", dl, & " days in the Julian Day calendar."
This example shows how to destroy two ESMF_Calendars.
call ESMF_CalendarDestroy(julianDayCalendar, rc)
call ESMF_CalendarDestroy(gregorianCalendar, rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
end program ESMF_CalendarEx
INTERFACE:
interface operator(==) if (calendar1 == calendar2) then ... endif OR result = (calendar1 == calendar2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Calendar), intent(in) :: calendar1 type(ESMF_Calendar), intent(in) :: calendar2DESCRIPTION:
Overloads the (==) operator for the ESMF_Calendar class. Compare two calendar objects for equality; return true if equal, false otherwise. Comparison is based on the calendar type.
The arguments are:
INTERFACE:
interface operator(==) if (calendartype1 == calendartype2) then ... endif OR result = (calendartype1 == calendartype2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_CalendarType), intent(in) :: calendartype1 type(ESMF_CalendarType), intent(in) :: calendartype2DESCRIPTION:
Overloads the (==) operator for the ESMF_Calendar class. Compare two calendar types for equality; return true if equal, false otherwise.
The arguments are:
INTERFACE:
interface operator(==) if (calendar == calendartype) then ... endif OR result = (calendar == calendartype)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Calendar), intent(in) :: calendar type(ESMF_CalendarType), intent(in) :: calendartypeDESCRIPTION:
Overloads the (==) operator for the ESMF_Calendar class. Compare a calendar object's type with a given calendar type for equality; return true if equal, false otherwise.
The arguments are:
INTERFACE:
interface operator(==) if (calendartype == calendar) then ... endif OR result = (calendartype == calendar)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_CalendarType), intent(in) :: calendartype type(ESMF_Calendar), intent(in) :: calendarDESCRIPTION:
Overloads the (==) operator for the ESMF_Calendar class. Compare a calendar type with a given calendar object's type for equality; return true if equal, false otherwise.
The arguments are:
INTERFACE:
interface operator(/=) if (calendar1 /= calendar2) then ... endif OR result = (calendar1 /= calendar2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Calendar), intent(in) :: calendar1 type(ESMF_Calendar), intent(in) :: calendar2DESCRIPTION:
Overloads the (/=) operator for the ESMF_Calendar class. Compare two calendar objects for inequality; return true if not equal, false otherwise. Comparison is based on the calendar type.
The arguments are:
INTERFACE:
interface operator(/=) if (calendartype1 /= calendartype2) then ... endif OR result = (calendartype1 /= calendartype2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_CalendarType), intent(in) :: calendartype1 type(ESMF_CalendarType), intent(in) :: calendartype2DESCRIPTION:
Overloads the (/=) operator for the ESMF_Calendar class. Compare two calendar types for inequality; return true if not equal, false otherwise.
The arguments are:
INTERFACE:
interface operator(/=) if (calendar /= calendartype) then ... endif OR result = (calendar /= calendartype)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Calendar), intent(in) :: calendar type(ESMF_CalendarType), intent(in) :: calendartypeDESCRIPTION:
Overloads the (/=) operator for the ESMF_Calendar class. Compare a calendar object's type with a given calendar type for inequality; return true if equal, false otherwise.
The arguments are:
INTERFACE:
interface operator(/=) if (calendartype /= calendar) then ... endif OR result = (calendartype /= calendar)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_CalendarType), intent(in) :: calendartype type(ESMF_Calendar), intent(in) :: calendarDESCRIPTION:
Overloads the (/=) operator for the ESMF_Calendar class. Compare a calendar type with a given calendar object's type for inequality; return true if equal, false otherwise.
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarCreate() function ESMF_CalendarCreateBuiltIn(name, calendartype, rc)RETURN VALUE:
type(ESMF_Calendar) :: ESMF_CalendarCreateBuiltInARGUMENTS:
character (len=*), intent(in), optional :: name type(ESMF_CalendarType), intent(in) :: calendartype integer, intent(out), optional :: rcDESCRIPTION:
Creates and sets a calendar to the given built-in ESMF_CalendarType.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarCreate().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarCreate() function ESMF_CalendarCreateCopy(calendar, rc)RETURN VALUE:
type(ESMF_Calendar) :: ESMF_CalendarCreateCopyARGUMENTS:
type(ESMF_Calendar), intent(in) :: calendar integer, intent(out), optional :: rcDESCRIPTION:
Creates a copy of a given ESMF_Calendar.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarCreate().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarCreate() function ESMF_CalendarCreateCustom(name, daysPerMonth, secondsPerDay, & daysPerYear, daysPerYearDn, & daysPerYearDd, rc)RETURN VALUE:
type(ESMF_Calendar) :: ESMF_CalendarCreateCustomARGUMENTS:
character (len=*), intent(in), optional :: name integer, dimension(:), intent(in), optional :: daysPerMonth integer(ESMF_KIND_I4), intent(in), optional :: secondsPerDay integer(ESMF_KIND_I4), intent(in), optional :: daysPerYear ! not implemented integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDn ! not implemented integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDd ! not implemented integer, intent(out), optional :: rcDESCRIPTION:
Creates a custom ESMF_Calendar and sets its properties.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarCreate().
The arguments are:
INTERFACE:
subroutine ESMF_CalendarDestroy(calendar, rc)ARGUMENTS:
type(ESMF_Calendar) :: calendar integer, intent(out), optional :: rcDESCRIPTION:
Releases all resources associated with this ESMF_Calendar.
The arguments are:
INTERFACE:
subroutine ESMF_CalendarGet(calendar, name, calendartype, & daysPerMonth, monthsPerYear, & secondsPerDay, secondsPerYear, & daysPerYear, & daysPerYearDn, daysPerYearDd, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar character (len=*), intent(out), optional :: name type(ESMF_CalendarType), intent(out), optional :: calendartype integer, dimension(:), intent(out), optional :: daysPerMonth integer, intent(out), optional :: monthsPerYear integer(ESMF_KIND_I4), intent(out), optional :: secondsPerDay integer(ESMF_KIND_I4), intent(out), optional :: secondsPerYear integer(ESMF_KIND_I4), intent(out), optional :: daysPerYear ! not implemented integer(ESMF_KIND_I4), intent(out), optional :: daysPerYearDn ! not implemented integer(ESMF_KIND_I4), intent(out), optional :: daysPerYearDd ! not implemented integer, intent(out), optional :: rcDESCRIPTION:
Gets one or more of an ESMF_Calendar's properties.
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarIsLeapYear() function ESMF_CalendarIsLeapYearI4(calendar, yy, rc)RETURN VALUE:
logical :: ESMF_CalendarIsLeapYearI4ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar integer(ESMF_KIND_I4), intent(in) :: yy integer, intent(out), optional :: rcDESCRIPTION:
Returns true if the given year is a leap year within the given calendar, and false otherwise. See also ESMF_TimeIsLeapYear().
This is a private method; invoke via the public overloaded entry point ESMF_CalendarIsLeapYear().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarIsLeapYear() function ESMF_CalendarIsLeapYearI8(calendar, yy_i8, rc)RETURN VALUE:
logical :: ESMF_CalendarIsLeapYearI8ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar integer(ESMF_KIND_I8), intent(in) :: yy_i8 integer, intent(out), optional :: rcDESCRIPTION:
Returns true if the given year is a leap year within the given calendar, and false otherwise. See also ESMF_TimeIsLeapYear().
This is a private method; invoke via the public overloaded entry point ESMF_CalendarIsLeapYear().
The arguments are:
INTERFACE:
subroutine ESMF_CalendarPrint(calendar, options, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints out an ESMF_Calendar's properties to stdio,
in support of testing and debugging. The options control the
type of information and level of detail.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarSet() subroutine ESMF_CalendarSetBuiltIn(calendar, name, calendartype, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar character (len=*), intent(in), optional :: name type(ESMF_CalendarType), intent(in) :: calendartype integer, intent(out), optional :: rcDESCRIPTION:
Sets calendar to the given built-in ESMF_CalendarType.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarSet().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarSet() subroutine ESMF_CalendarSetCustom(calendar, name, daysPerMonth, & secondsPerDay, & daysPerYear, daysPerYearDn, & daysPerYearDd, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar character (len=*), intent(in), optional :: name integer, dimension(:), intent(in), optional :: daysPerMonth integer(ESMF_KIND_I4), intent(in), optional :: secondsPerDay integer(ESMF_KIND_I4), intent(in), optional :: daysPerYear ! not implemented integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDn ! not implemented integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDd ! not implemented integer, intent(out), optional :: rcDESCRIPTION:
Sets properties in a custom ESMF_Calendar.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarSet().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarSetDefault() subroutine ESMF_CalendarSetDefaultType(calendartype, rc)ARGUMENTS:
type(ESMF_CalendarType), intent(in) :: calendartype integer, intent(out), optional :: rcDESCRIPTION:
Sets the default calendar to the given type. Subsequent Time Manager operations requiring a calendar where one isn't specified will use the internal calendar of this type.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarSetDefault().
The arguments are:
INTERFACE:
! Private name; call using ESMF_CalendarSetDefault() subroutine ESMF_CalendarSetDefaultCal(calendar, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar integer, intent(out), optional :: rcDESCRIPTION:
Sets the default calendar to the one given. Subsequent Time Manager operations requiring a calendar where one isn't specified will use this calendar.
This is a private method; invoke via the public overloaded entry point ESMF_CalendarSetDefault().
The arguments are:
INTERFACE:
subroutine ESMF_CalendarValidate(calendar, options, rc)ARGUMENTS:
type(ESMF_Calendar), intent(inout) :: calendar character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Checks whether a calendar is valid. Must be one of the defined calendar types. daysPerMonth, daysPerYear, secondsPerDay must all be greater than or equal to zero.
The arguments are:
A Time represents a specific point in time. In order to accommodate the range of time scales in Earth system applications, Times in the ESMF an be specified in many different ways, from years to nanoseconds. The Time interface is designed so that you select one or more options from a list of time units in order to specify a Time. The options for specifying a Time are shown in Table 33.4.
There are Time methods defined for setting and getting a Time, incrementing and decrementing a Time by a TimeInterval, taking the difference between two Times, and comparing Times. Special quantities such as the middle of the month and the day of the year associated with a particular Time can be retrieved. There is a method for returning the Time value as a string in the ISO 8601 format YYYY-MM-DDThh:mm:ss [19].
A Time that is specified in hours, minutes, seconds, or subsecond intervals does not need to be associated with a standard calendar; a Time whose specification includes time units of a day and greater must be. The ESMF representation of a calendar, the Calendar class, is described in Section 34.1. The ESMF_TimeSet method is used to initialize a Time as well as associate it with a Calendar. If a Time method is invoked in which a Calendar is necessary and one has not been set, the ESMF method will return an error condition.
In the ESMF the TimeInterval class is used to represent time periods. This class is frequently used in combination with the Time class. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.
Times are most frequently used to represent start, stop, and current model times. The following examples show how to create, initialize, and manipulate Time.
! !PROGRAM: ESMF_TimeEx - Time initialization and manipulation examples ! ! !DESCRIPTION: ! ! This program shows examples of Time initialization and manipulation !----------------------------------------------------------------------------- ! ESMF Framework module use ESMF_Mod implicit none ! instantiate two times type(ESMF_Time) :: time1, time2 ! instantiate a time interval type(ESMF_TimeInterval) :: timeinterval1 ! local variables for Get methods integer :: YY, MM, DD, H, M, S ! return code integer:: rc
! initialize ESMF framework call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGORIAN, rc=rc)
This example shows how to initialize an ESMF_Time.
! initialize time1 to 2/28/2000 2:24:45 call ESMF_TimeSet(time1, yy=2000, mm=2, dd=28, h=2, m=24, s=45, rc=rc)
print *, "Time1 = " call ESMF_TimePrint(time1, "string", rc)
This example shows how to increment an ESMF_Time by an ESMF_TimeInterval.
! initialize a time interval to 2 days, 8 hours, 36 minutes, 15 seconds call ESMF_TimeIntervalSet(timeinterval1, d=2, h=8, m=36, s=15, rc=rc)
print *, "Timeinterval1 = " call ESMF_TimeIntervalPrint(timeinterval1, "string", rc)
! increment time1 with timeinterval1 time2 = time1 + timeinterval1 call ESMF_TimeGet(time2, yy=YY, mm=MM, dd=DD, h=H, m=M, s=S, rc=rc) print *, "time2 = time1 + timeinterval1 = ", YY, "/", MM, "/", DD, " ", & H, ":", M, ":", S
This example shows how to compare two ESMF_Times.
if (time2 > time1) then print *, "time2 is larger than time1" else print *, "time1 is smaller than or equal to time2" endif ! finalize ESMF framework call ESMF_Finalize(rc=rc)
end program ESMF_TimeEx
For fractional seconds, a signed 64-bit integer will handle a resolution of +/- -1, or +/- 9,223,372,036,854,775,807 parts of a second.
INTERFACE:
interface operator(+) time2 = time1 + timeintervalRETURN VALUE:
type(ESMF_Time) :: time2ARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_TimeInterval), intent(in) :: timeintervalDESCRIPTION:
Overloads the (+) operator for the ESMF_Time class to increment time1 with timeinterval and return the result as an ESMF_Time.
The arguments are:
INTERFACE:
interface operator(-) time2 = time1 - timeintervalRETURN VALUE:
type(ESMF_Time) :: time2ARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_TimeInterval), intent(in) :: timeintervalDESCRIPTION:
Overloads the (-) operator for the ESMF_Time class to decrement time1 with timeinterval, and return the result as an ESMF_Time.
The arguments are:
INTERFACE:
interface operator(-) time3 = time1 - time2RETURN VALUE:
type(ESMF_Time) :: time3ARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (-) operator for the ESMF_Time class to return the difference between time1 and time2 as an ESMF_TimeInterval. It is assumed that time1 is later than time2; if not, the resulting ESMF_TimeInterval will have a negative value.
The arguments are:
INTERFACE:
interface operator(==) if (time1 == time2) then ... endif OR result = (time1 == time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (==) operator for the ESMF_Time class to return true if time1 and time2 are equal, and false otherwise.
The arguments are:
INTERFACE:
interface operator(/=) if (time1 /= time2) then ... endif OR result = (time1 /= time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (/=) operator for the ESMF_Time class to return true if time1 and time2 are not equal, and false otherwise.
The arguments are:
INTERFACE:
interface operator(<) if (time1 < time2) then ... endif OR result = (time1 < time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (<) operator for the ESMF_Time class to return true if time1 is less than time2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(<=) if (time1 <= time2) then ... endif OR result = (time1 <= time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (<=) operator for the ESMF_Time class to return true if time1 is less than or equal to time2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(>) if (time1 > time2) then ... endif OR result = (time1 > time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (>) operator for the ESMF_Time class to return true if time1 is greater than time2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(>=) if (time1 >= time2) then ... endif OR result = (time1 >= time2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Time), intent(in) :: time1 type(ESMF_Time), intent(in) :: time2DESCRIPTION:
Overloads the (>=) operator for the ESMF_Time class to return true if time1 is greater than or equal to time2, and false otherwise.
The arguments are:
INTERFACE:
subroutine ESMF_TimeGet(time, yy, yy_i8, & mm, dd, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & calendar, calendarType, timeZone, & timeString, timeStringISOFrac, & dayOfWeek, midMonth, & dayOfYear, dayOfYear_r8, & dayOfYear_intvl, rc)ARGUMENTS:
type(ESMF_Time), intent(inout) :: time integer(ESMF_KIND_I4), intent(out), optional :: yy integer(ESMF_KIND_I8), intent(out), optional :: yy_i8 integer, intent(out), optional :: mm integer, intent(out), optional :: dd integer(ESMF_KIND_I4), intent(out), optional :: d integer(ESMF_KIND_I8), intent(out), optional :: d_i8 integer(ESMF_KIND_I4), intent(out), optional :: h integer(ESMF_KIND_I4), intent(out), optional :: m integer(ESMF_KIND_I4), intent(out), optional :: s integer(ESMF_KIND_I8), intent(out), optional :: s_i8 integer(ESMF_KIND_I4), intent(out), optional :: ms integer(ESMF_KIND_I4), intent(out), optional :: us integer(ESMF_KIND_I4), intent(out), optional :: ns real(ESMF_KIND_R8), intent(out), optional :: d_r8 real(ESMF_KIND_R8), intent(out), optional :: h_r8 real(ESMF_KIND_R8), intent(out), optional :: m_r8 real(ESMF_KIND_R8), intent(out), optional :: s_r8 real(ESMF_KIND_R8), intent(out), optional :: ms_r8 real(ESMF_KIND_R8), intent(out), optional :: us_r8 real(ESMF_KIND_R8), intent(out), optional :: ns_r8 integer(ESMF_KIND_I4), intent(out), optional :: sN integer(ESMF_KIND_I8), intent(out), optional :: sN_i8 integer(ESMF_KIND_I4), intent(out), optional :: sD integer(ESMF_KIND_I8), intent(out), optional :: sD_i8 type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType integer, intent(out), optional :: timeZone ! not implemented character (len=*), intent(out), optional :: timeString character (len=*), intent(out), optional :: timeStringISOFrac integer, intent(out), optional :: dayOfWeek type(ESMF_Time), intent(out), optional :: midMonth integer(ESMF_KIND_I4), intent(out), optional :: dayOfYear real(ESMF_KIND_R8), intent(out), optional :: dayOfYear_r8 type(ESMF_TimeInterval), intent(out), optional :: dayOfYear_intvl integer, intent(out), optional :: rcDESCRIPTION:
Gets the value of time in units specified by the user via Fortran optional arguments. See ESMF_TimeSet() above for a description of time units and calendars.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally from integers. For example, if a time value is 5 and 3/8 seconds (s=5, sN=3, sD=8), and you want to get it as floating point seconds, you would get 5.375 (s_r8=5.375).
Units are bound (normalized) by the next larger unit specified. For example, if a time is defined to be 2:00 am on February 2, 2004, then ESMF_TimeGet(dd=day, h=hours, s=seconds) would return day = 2, hours = 2, seconds = 0, whereas ESMF_TimeGet(dd = day, s=seconds) would return day = 2, seconds = 7200. Note that hours and seconds are bound by a day. If bound by a month, ESMF_TimeGet(mm=month, h=hours, s=seconds) would return month = 2, hours = 26, seconds = 0, and ESMF_TimeGet(mm = month, s=seconds) would return month = 2, seconds = 93600 (26 * 3600). Similarly, if bound to a year, ESMF_TimeGet(yy=year, h=hours, s=seconds) would return year = 2004, hours = 770 (32*24 + 2), seconds = 0, and ESMF_TimeGet(yy = year, s=seconds) would return year = 2004, seconds = 2772000 (770 * 3600).
For timeString, timeStringISOFrac, dayOfWeek,
midMonth, dayOfYear, dayOfYear_r8, and
dayOfYear_intvl described below, valid calendars are Gregorian,
Julian, No Leap, 360 Day and Custom calendars. Not valid for
Julian Day, Modified Julian Day, or No Calendar.
For timeString and timeStringISOFrac, YYYY format returns at least 4 digits; years <= 999 are padded on the left with zeroes and years >= 10000 return the number of digits required.
For timeString, convert ESMF_Time's value into partial ISO 8601 format YYYY-MM-DDThh:mm:ss[:n/d]. See [19] and [2]. See also method ESMF_TimePrint().
For timeStringISOFrac, convert ESMF_Time's value into full ISO 8601 format YYYY-MM-DDThh:mm:ss[.f]. See [19] and [2]. See also method ESMF_TimePrint().
For dayOfWeek, gets the day of the week the given ESMF_Time instant falls on. ISO 8601 standard: Monday = 1 through Sunday = 7. See [19] and [2].
For midMonth, gets the middle time instant of the month that the given ESMF_Time instant falls on.
For dayOfYear, gets the day of the year that the given ESMF_Time instant falls on. See range discusion in argument list below. Return as an integer value.
For dayOfYear_r8, gets the day of the year the given ESMF_Time instant falls on. See range discusion in argument list below. Return as floating point value; fractional part represents the time of day.
For dayOfYear_intvl, gets the day of the year the given ESMF_Time instant falls on. Return as an ESMF_TimeInterval.
The arguments are:
INTERFACE:
function ESMF_TimeIsLeapYear(time, rc)RETURN VALUE:
logical :: ESMF_TimeIsLeapYearARGUMENTS:
type(ESMF_Time), intent(inout) :: time integer, intent(out), optional :: rcDESCRIPTION:
Returns true if given time is in a leap year, and false otherwise. See also ESMF_CalendarIsLeapYear().
The arguments are:
INTERFACE:
function ESMF_TimeIsSameCalendar(time1, time2, rc)RETURN VALUE:
logical :: ESMF_TimeIsSameCalendarARGUMENTS:
type(ESMF_Time), intent(inout) :: time1 type(ESMF_Time), intent(inout) :: time2 integer, intent(out), optional :: rcDESCRIPTION:
Returns true if the Calendars in these Times are the same, false otherwise.
The arguments are:
INTERFACE:
subroutine ESMF_TimePrint(time, options, rc)ARGUMENTS:
type(ESMF_Time), intent(inout) :: time character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints out the contents of an ESMF_Time to stdout, in
support of testing and debugging. The options control the type of
information and level of detail. For options "string" and "string
isofrac", YYYY format returns at least 4 digits; years <= 999 are
padded on the left with zeroes and years >= 10000 return the number
of digits required.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
subroutine ESMF_TimeSet(time, yy, yy_i8, & mm, dd, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & calendar, calendarType, & timeZone, rc)ARGUMENTS:
type(ESMF_Time), intent(inout) :: time integer(ESMF_KIND_I4), intent(in), optional :: yy integer(ESMF_KIND_I8), intent(in), optional :: yy_i8 integer, intent(in), optional :: mm integer, intent(in), optional :: dd integer(ESMF_KIND_I4), intent(in), optional :: d integer(ESMF_KIND_I8), intent(in), optional :: d_i8 integer(ESMF_KIND_I4), intent(in), optional :: h integer(ESMF_KIND_I4), intent(in), optional :: m integer(ESMF_KIND_I4), intent(in), optional :: s integer(ESMF_KIND_I8), intent(in), optional :: s_i8 integer(ESMF_KIND_I4), intent(in), optional :: ms integer(ESMF_KIND_I4), intent(in), optional :: us integer(ESMF_KIND_I4), intent(in), optional :: ns real(ESMF_KIND_R8), intent(in), optional :: d_r8 real(ESMF_KIND_R8), intent(in), optional :: h_r8 real(ESMF_KIND_R8), intent(in), optional :: m_r8 real(ESMF_KIND_R8), intent(in), optional :: s_r8 real(ESMF_KIND_R8), intent(in), optional :: ms_r8 real(ESMF_KIND_R8), intent(in), optional :: us_r8 real(ESMF_KIND_R8), intent(in), optional :: ns_r8 integer(ESMF_KIND_I4), intent(in), optional :: sN integer(ESMF_KIND_I8), intent(in), optional :: sN_i8 integer(ESMF_KIND_I4), intent(in), optional :: sD integer(ESMF_KIND_I8), intent(in), optional :: sD_i8 type(ESMF_Calendar), intent(in), optional :: calendar type(ESMF_CalendarType), intent(in), optional :: calendarType integer, intent(in), optional :: timeZone ! not implemented integer, intent(out), optional :: rcDESCRIPTION:
Initializes an ESMF_Time with a set of user-specified units via Fortran optional arguments.
The range of valid values for mm and dd depend on the calendar used. For Gregorian, Julian, and No-Leap calendars, mm is [1-12] and dd is [1-28,29,30, or 31], depending on the value of mm and whether yy or yy_i8 is a leap year. For the 360-day calendar, mm is [1-12] and dd is [1-30]. For the Julian-day, Modified Julian-day, and No-calendar, yy, yy_i8, mm, and dd are invalid inputs, since these calendars do not define them. When valid, the yy and yy_i8 arguments should be fully specified, e.g. 2003 instead of 03. yy and yy_i8 ranges are only limited by machine word size, except for the Gregorian and Julian calendars, where the lowest (proleptic) date limits are 3/1/-4800 and 3/1/-4712, respectively. This is a limitation of the Gregorian date-to-Julian day and Julian date-to-Julian day conversion algorithms used to convert Gregorian and Julian dates to the internal representation of seconds. See [11] for a description of the Gregorian date-to-Julian day algorithm and [15] for a description of the Julian date-to-Julian day algorithm. The Custom calendar will have user-defined values for yy, yy_i8, mm, and dd.
The Julian day specifier, d or d_i8, can only be used with the Julian-day and Modified Julian Day calendars, and has a valid range depending on the word size. For a signed 32-bit d, the range for Julian-day is [+/- 24855]. For a signed 64-bit d or d_i8, the valid range for Julian-day is [+/- 106,751,991,167,300]. The Julian day number system adheres to the conventional standard where the reference day of d=0 corresponds to 11/24/-4713 in the proleptic Gregorian calendar and 1/1/-4712 in the proleptic Julian calendar. See [23] and [1].
The Modified Julian Day, introduced by space scientists in the late 1950's, is defined as Julian-day - 2400000.5. See [32].
Note that d and d_i8 are not valid for the No-Calendar. To remain consistent with non-Earth calendars added to ESMF in the future, ESMF requires a calendar to be planet-specific. Hence the No-Calendar does not know what a day is; it cannot assume an Earth day of 86400 seconds.
Hours, minutes, seconds, and sub-seconds can be used with any calendar, since they are standardized units that are the same for any planet.
Time manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally to integers. Sub-second values are represented internally with an integer numerator and denominator fraction (sN/sD). The smallest required resolution is nanoseconds (denominator), per Time Manager requirement TMG3.1. For example, pi can be represented as s=3, sN=141592654, sD=1000000000. However, via sN_i8 and sD_i8, larger values can be used. If specifying a constant floating point value, be sure to provide at least 16 digits to take full advantage of double precision, for example s_r8=2.718281828459045d0 for 'e' seconds.
The arguments are:
INTERFACE:
subroutine ESMF_TimeSyncToRealTime(time, rc)ARGUMENTS:
type(ESMF_Time), intent(inout) :: time integer, intent(out), optional :: rcDESCRIPTION:
Gets the system real time (wall clock time), and returns it as an ESMF_Time. Accurate to the nearest second.
The arguments are:
INTERFACE:
subroutine ESMF_TimeValidate(time, options, rc)ARGUMENTS:
type(ESMF_Time), intent(inout) :: time character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Checks whether an ESMF_Time is valid. Must be a valid date/time on a valid calendar. The options control the type of validation.
The arguments are:
There are TimeInterval methods defined for setting and getting a TimeInterval, for incrementing and decrementing a TimeInterval by another TimeInterval, and for multiplying and dividing TimeIntervals by integers, reals, fractions and other TimeIntervals. Methods are also defined to take the absolute value and negative absolute value of a TimeInterval, and for comparing the length of two TimeIntervals.
The class used to represent time instants in ESMF is Time, and this class is frequently used in operations along with TimeIntervals. For example, the difference between two Times is a TimeInterval.
When a TimeInterval is used in calculations that involve an absolute reference time, such as incrementing a Time with a TimeInterval, calendar dependencies may be introduced. The length of the time period that the TimeInterval represents will depend on the reference Time and the standard calendar that is associated with it. The calendar dependency becomes apparent when, for example, adding a TimeInterval of 1 day to the Time of February 28, 1996, at 4:00pm EST. In a 360 day calendar, the resulting date would be February 29, 1996, at 4:00pm EST. In a no-leap calendar, the result would be March 1, 1996, at 4:00pm EST.
TimeIntervals are used by other parts of the ESMF timekeeping system, such as Clocks (Section 37.1) and Alarms (Section 38.1).
A typical use for a TimeInterval in a geophysical model is representation of the time step by which the model is advanced. Some models change the size of their time step as the model run progresses; this could be done by incrementing or decrementing the original time step by another TimeInterval, or by dividing or multiplying the time step by an integer value. An example of advancing model time using a TimeInterval representation of a time step is shown in Section 37.1.
The following brief example shows how to create, initialize and manipulate TimeInterval.
! !PROGRAM: ESMF_TimeIntervalEx - Time Interval initialization and manipulation examples ! ! !DESCRIPTION: ! ! This program shows examples of Time Interval initialization and manipulation !----------------------------------------------------------------------------- ! ESMF Framework module use ESMF_Mod implicit none ! instantiate some time intervals type(ESMF_TimeInterval) :: timeinterval1, timeinterval2, timeinterval3 ! local variables integer :: d, h, m, s ! return code integer:: rc
! initialize ESMF framework call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGORIAN, rc=rc)
This example shows how to initialize two ESMF_TimeIntervals.
! initialize time interval1 to 1 day call ESMF_TimeIntervalSet(timeinterval1, d=1, rc=rc)
call ESMF_TimeIntervalPrint(timeinterval1, "string", rc)
! initialize time interval2 to 4 days, 1 hour, 30 minutes, 10 seconds call ESMF_TimeIntervalSet(timeinterval2, d=4, h=1, m=30, s=10, rc=rc)
call ESMF_TimeIntervalPrint(timeinterval2, "string", rc)
This example shows how to convert ESMF_TimeIntervals into different units.
call ESMF_TimeIntervalGet(timeinterval1, s=s, rc=rc) print *, "Time Interval1 = ", s, " seconds."
call ESMF_TimeIntervalGet(timeinterval2, h=h, m=m, s=s, rc=rc) print *, "Time Interval2 = ", h, " hours, ", m, " minutes, ", & s, " seconds."
This example shows how to calculate the difference between two ESMF_TimeIntervals.
! difference between two time intervals timeinterval3 = timeinterval2 - timeinterval1 call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc) print *, "Difference between TimeInterval2 and TimeInterval1 = ", & d, " days, ", h, " hours, ", m, " minutes, ", s, " seconds."
This example shows how to multiply an ESMF_TimeInterval.
! multiply time interval by an integer timeinterval3 = timeinterval2 * 3 call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc) print *, "TimeInterval2 multiplied by 3 = ", d, " days, ", h, & " hours, ", m, " minutes, ", s, " seconds."
This example shows how to compare two ESMF_TimeIntervals.
! comparison if (timeinterval1 < timeinterval2) then print *, "TimeInterval1 is smaller than TimeInterval2" else print *, "TimeInterval1 is larger than or equal to TimeInterval2" end if ! finalize ESMF framework call ESMF_Finalize(rc=rc)
end program ESMF_TimeIntervalEx
For fractional seconds, a signed 64-bit integer will handle a resolution of +/- -1, or +/- 9,223,372,036,854,775,807 parts of a second.
INTERFACE:
interface operator(+) sum = timeinterval1 + timeinterval2RETURN VALUE:
type(ESMF_TimeInterval) :: sumARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (+) operator for the ESMF_TimeInterval class to add timeinterval1 to timeinterval2 and return the sum as an ESMF_TimeInterval.
The arguments are:
INTERFACE:
interface operator(-) difference = timeinterval1 - timeinterval2RETURN VALUE:
type(ESMF_TimeInterval) :: differenceARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (-) operator for the ESMF_TimeInterval class to subtract timeinterval2 from timeinterval1 and return the difference as an ESMF_TimeInterval.
The arguments are:
INTERFACE:
interface operator(-) timeinterval = -timeintervalRETURN VALUE:
type(ESMF_TimeInterval) :: -timeIntervalARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeintervalDESCRIPTION:
Overloads the (-) operator for the ESMF_TimeInterval class to perform unary negation on timeinterval and return the result.
The arguments are:
INTERFACE:
interface operator(/) quotient = timeinterval1 / timeinterval2RETURN VALUE:
real(ESMF_KIND_R8) :: quotientARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (/) operator for the ESMF_TimeInterval class to return timeinterval1 divided by timeinterval2 as a double precision quotient.
The arguments are:
INTERFACE:
interface operator(/) quotient = timeinterval / divisorRETURN VALUE:
type(ESMF_TimeInterval) :: quotientARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval integer(ESMF_KIND_I4), intent(in) :: divisorDESCRIPTION:
Overloads the (/) operator for the ESMF_TimeInterval class to divide a timeinterval by an integer divisor, and return the quotient as an ESMF_TimeInterval.
The arguments are:
INTERFACE:
interface MOD remainder = MOD(timeinterval1, timeinterval2)RETURN VALUE:
type(ESMF_TimeInterval) :: remainderARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the pre-defined MOD() function for the ESMF_TimeInterval class to return the remainder of timeinterval1 divided by timeinterval2 as an ESMF_TimeInterval.
The arguments are:
INTERFACE:
interface operator(*) product = timeinterval * multiplierRETURN VALUE:
type(ESMF_TimeInterval) :: productARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval integer(ESMF_KIND_I4), intent(in) :: multiplierDESCRIPTION:
Overloads the (*) operator for the ESMF_TimeInterval class to multiply a timeinterval by an integer multiplier, and return the product as an ESMF_TimeInterval.
Commutative complement to overloaded operator (*) below.
The arguments are:
INTERFACE:
interface operator(*) product = multiplier * timeintervalRETURN VALUE:
type(ESMF_TimeInterval) :: productARGUMENTS:
integer(ESMF_KIND_I4), intent(in) :: multiplier type(ESMF_TimeInterval), intent(in) :: timeintervalDESCRIPTION:
Overloads the (*) operator for the ESMF_TimeInterval class to multiply a timeinterval by an integer multiplier, and return the product as an ESMF_TimeInterval.
Commutative complement to overloaded operator (*) above.
The arguments are:
INTERFACE:
interface operator(==) if (timeinterval1 == timeinterval2) then ... endif OR result = (timeinterval1 == timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (==) operator for the ESMF_TimeInterval class to return true if timeinterval1 and timeinterval2 are equal, and false otherwise.
The arguments are:
INTERFACE:
interface operator(/=) if (timeinterval1 /= timeinterval2) then ... endif OR result = (timeinterval1 /= timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (/=) operator for the ESMF_TimeInterval class to return true if timeinterval1 and timeinterval2 are not equal, and false otherwise.
The arguments are:
INTERFACE:
interface operator(<) if (timeinterval1 < timeinterval2) then ... endif OR result = (timeinterval1 < timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (<) operator for the ESMF_TimeInterval class to return true if timeinterval1 is less than timeinterval2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(<=) if (timeinterval1 <= timeinterval2) then ... endif OR result = (timeinterval1 <= timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (<=) operator for the ESMF_TimeInterval class to return true if timeinterval1 is less than or equal to timeinterval2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(>) if (timeinterval1 > timeinterval2) then ... endif OR result = (timeinterval1 > timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (<) operator for the ESMF_TimeInterval class to return true if timeinterval1 is greater than timeinterval2, and false otherwise.
The arguments are:
INTERFACE:
interface operator(>=) if (timeinterval1 >= timeinterval2) then ... endif OR result = (timeinterval1 >= timeinterval2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeinterval1 type(ESMF_TimeInterval), intent(in) :: timeinterval2DESCRIPTION:
Overloads the (<=) operator for the ESMF_TimeInterval class to return true if timeinterval1 is greater than or equal to timeinterval2, and false otherwise.
The arguments are:
INTERFACE:
function ESMF_TimeIntervalAbsValue(timeinterval)RETURN VALUE:
type(ESMF_TimeInterval) :: ESMF_TimeIntervalAbsValueARGUMENTS:
type(ESMF_TimeInterval), intent(in) :: timeintervalDESCRIPTION:
Returns the absolute value of timeinterval.
The argument is:
INTERFACE:
! Private name; call using ESMF_TimeIntervalGet() subroutine ESMF_TimeIntervalGetDur(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & startTime, calendar, calendarType, & timeString, timeStringISOFrac, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(out), optional :: yy integer(ESMF_KIND_I8), intent(out), optional :: yy_i8 integer(ESMF_KIND_I4), intent(out), optional :: mm integer(ESMF_KIND_I8), intent(out), optional :: mm_i8 integer(ESMF_KIND_I4), intent(out), optional :: d integer(ESMF_KIND_I8), intent(out), optional :: d_i8 integer(ESMF_KIND_I4), intent(out), optional :: h integer(ESMF_KIND_I4), intent(out), optional :: m integer(ESMF_KIND_I4), intent(out), optional :: s integer(ESMF_KIND_I8), intent(out), optional :: s_i8 integer(ESMF_KIND_I4), intent(out), optional :: ms integer(ESMF_KIND_I4), intent(out), optional :: us integer(ESMF_KIND_I4), intent(out), optional :: ns real(ESMF_KIND_R8), intent(out), optional :: d_r8 real(ESMF_KIND_R8), intent(out), optional :: h_r8 real(ESMF_KIND_R8), intent(out), optional :: m_r8 real(ESMF_KIND_R8), intent(out), optional :: s_r8 real(ESMF_KIND_R8), intent(out), optional :: ms_r8 real(ESMF_KIND_R8), intent(out), optional :: us_r8 real(ESMF_KIND_R8), intent(out), optional :: ns_r8 integer(ESMF_KIND_I4), intent(out), optional :: sN integer(ESMF_KIND_I8), intent(out), optional :: sN_i8 integer(ESMF_KIND_I4), intent(out), optional :: sD integer(ESMF_KIND_I8), intent(out), optional :: sD_i8 type(ESMF_Time), intent(out), optional :: startTime type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType character (len=*), intent(out), optional :: timeString character (len=*), intent(out), optional :: timeStringISOFrac integer, intent(out), optional :: rcDESCRIPTION:
Gets the value of timeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds = 0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.
See ../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete description.
For timeString, converts ESMF_TimeInterval's value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
For timeStringISOFrac, converts ESMF_TimeInterval's value into full ISO 8601 format PyYmMdDThHmMs[.f]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalGet() subroutine ESMF_TimeIntervalGetDurStart(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & startTime, & calendar, calendarType, & startTimeIn, & timeString, timeStringISOFrac, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(out), optional :: yy integer(ESMF_KIND_I8), intent(out), optional :: yy_i8 integer(ESMF_KIND_I4), intent(out), optional :: mm integer(ESMF_KIND_I8), intent(out), optional :: mm_i8 integer(ESMF_KIND_I4), intent(out), optional :: d integer(ESMF_KIND_I8), intent(out), optional :: d_i8 integer(ESMF_KIND_I4), intent(out), optional :: h integer(ESMF_KIND_I4), intent(out), optional :: m integer(ESMF_KIND_I4), intent(out), optional :: s integer(ESMF_KIND_I8), intent(out), optional :: s_i8 integer(ESMF_KIND_I4), intent(out), optional :: ms integer(ESMF_KIND_I4), intent(out), optional :: us integer(ESMF_KIND_I4), intent(out), optional :: ns real(ESMF_KIND_R8), intent(out), optional :: d_r8 real(ESMF_KIND_R8), intent(out), optional :: h_r8 real(ESMF_KIND_R8), intent(out), optional :: m_r8 real(ESMF_KIND_R8), intent(out), optional :: s_r8 real(ESMF_KIND_R8), intent(out), optional :: ms_r8 real(ESMF_KIND_R8), intent(out), optional :: us_r8 real(ESMF_KIND_R8), intent(out), optional :: ns_r8 integer(ESMF_KIND_I4), intent(out), optional :: sN integer(ESMF_KIND_I8), intent(out), optional :: sN_i8 integer(ESMF_KIND_I4), intent(out), optional :: sD integer(ESMF_KIND_I8), intent(out), optional :: sD_i8 type(ESMF_Time), intent(out), optional :: startTime type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType type(ESMF_Time), intent(inout) :: startTimeIn ! Input character (len=*), intent(out), optional :: timeString character (len=*), intent(out), optional :: timeStringISOFrac integer, intent(out), optional :: rcDESCRIPTION:
Gets the value of timeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds = 0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.
See ../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete description.
For timeString, converts ESMF_TimeInterval's value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
For timeStringISOFrac, converts ESMF_TimeInterval's value into full ISO 8601 format PyYmMdDThHmMs[.f]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalGet() subroutine ESMF_TimeIntervalGetDurCal(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & startTime, & calendar, calendarType, & calendarIn, & timeString, timeStringISOFrac, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(out), optional :: yy integer(ESMF_KIND_I8), intent(out), optional :: yy_i8 integer(ESMF_KIND_I4), intent(out), optional :: mm integer(ESMF_KIND_I8), intent(out), optional :: mm_i8 integer(ESMF_KIND_I4), intent(out), optional :: d integer(ESMF_KIND_I8), intent(out), optional :: d_i8 integer(ESMF_KIND_I4), intent(out), optional :: h integer(ESMF_KIND_I4), intent(out), optional :: m integer(ESMF_KIND_I4), intent(out), optional :: s integer(ESMF_KIND_I8), intent(out), optional :: s_i8 integer(ESMF_KIND_I4), intent(out), optional :: ms integer(ESMF_KIND_I4), intent(out), optional :: us integer(ESMF_KIND_I4), intent(out), optional :: ns real(ESMF_KIND_R8), intent(out), optional :: d_r8 real(ESMF_KIND_R8), intent(out), optional :: h_r8 real(ESMF_KIND_R8), intent(out), optional :: m_r8 real(ESMF_KIND_R8), intent(out), optional :: s_r8 real(ESMF_KIND_R8), intent(out), optional :: ms_r8 real(ESMF_KIND_R8), intent(out), optional :: us_r8 real(ESMF_KIND_R8), intent(out), optional :: ns_r8 integer(ESMF_KIND_I4), intent(out), optional :: sN integer(ESMF_KIND_I8), intent(out), optional :: sN_i8 integer(ESMF_KIND_I4), intent(out), optional :: sD integer(ESMF_KIND_I8), intent(out), optional :: sD_i8 type(ESMF_Time), intent(inout), optional :: startTime type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType type(ESMF_Calendar), intent(in) :: calendarIn ! Input character (len=*), intent(out), optional :: timeString character (len=*), intent(out), optional :: timeStringISOFrac integer, intent(out), optional :: rcDESCRIPTION:
Gets the value of timeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds = 0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.
See ../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete description.
For timeString, converts ESMF_TimeInterval's value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
For timeStringISOFrac, converts ESMF_TimeInterval's value into full ISO 8601 format PyYmMdDThHmMs[.f]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalGet() subroutine ESMF_TimeIntervalGetDurCalTyp(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & startTime, & calendar, calendarType, & calendarTypeIn, & timeString, & timeStringISOFrac, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(out), optional :: yy integer(ESMF_KIND_I8), intent(out), optional :: yy_i8 integer(ESMF_KIND_I4), intent(out), optional :: mm integer(ESMF_KIND_I8), intent(out), optional :: mm_i8 integer(ESMF_KIND_I4), intent(out), optional :: d integer(ESMF_KIND_I8), intent(out), optional :: d_i8 integer(ESMF_KIND_I4), intent(out), optional :: h integer(ESMF_KIND_I4), intent(out), optional :: m integer(ESMF_KIND_I4), intent(out), optional :: s integer(ESMF_KIND_I8), intent(out), optional :: s_i8 integer(ESMF_KIND_I4), intent(out), optional :: ms integer(ESMF_KIND_I4), intent(out), optional :: us integer(ESMF_KIND_I4), intent(out), optional :: ns real(ESMF_KIND_R8), intent(out), optional :: d_r8 real(ESMF_KIND_R8), intent(out), optional :: h_r8 real(ESMF_KIND_R8), intent(out), optional :: m_r8 real(ESMF_KIND_R8), intent(out), optional :: s_r8 real(ESMF_KIND_R8), intent(out), optional :: ms_r8 real(ESMF_KIND_R8), intent(out), optional :: us_r8 real(ESMF_KIND_R8), intent(out), optional :: ns_r8 integer(ESMF_KIND_I4), intent(out), optional :: sN integer(ESMF_KIND_I8), intent(out), optional :: sN_i8 integer(ESMF_KIND_I4), intent(out), optional :: sD integer(ESMF_KIND_I8), intent(out), optional :: sD_i8 type(ESMF_Time), intent(out), optional :: startTime type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType type(ESMF_CalendarType), intent(in) :: calendarTypeIn ! Input character (len=*), intent(out), optional :: timeString character (len=*), intent(out), optional :: timeStringISOFrac integer, intent(out), optional :: rcDESCRIPTION:
Gets the value of timeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds = 0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.
See ../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete description.
For timeString, converts ESMF_TimeInterval's value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
For timeStringISOFrac, converts ESMF_TimeInterval's value into full ISO 8601 format PyYmMdDThHmMs[.f]S. See [19] and [2]. See also method ESMF_TimeIntervalPrint().
The arguments are:
INTERFACE:
function ESMF_TimeIntervalNegAbsValue(timeinterval)RETURN VALUE:
type(ESMF_TimeInterval) :: ESMF_TimeIntervalNegAbsValueARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeintervalDESCRIPTION:
Returns the negative absolute value of timeinterval.
The argument is:
INTERFACE:
subroutine ESMF_TimeIntervalPrint(timeinterval, options, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints out the contents of an ESMF_TimeInterval to stdout,
in support of testing and debugging. The options control the type of
information and level of detail.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalSet() subroutine ESMF_TimeIntervalSetDur(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(in), optional :: yy integer(ESMF_KIND_I8), intent(in), optional :: yy_i8 integer(ESMF_KIND_I4), intent(in), optional :: mm integer(ESMF_KIND_I8), intent(in), optional :: mm_i8 integer(ESMF_KIND_I4), intent(in), optional :: d integer(ESMF_KIND_I8), intent(in), optional :: d_i8 integer(ESMF_KIND_I4), intent(in), optional :: h integer(ESMF_KIND_I4), intent(in), optional :: m integer(ESMF_KIND_I4), intent(in), optional :: s integer(ESMF_KIND_I8), intent(in), optional :: s_i8 integer(ESMF_KIND_I4), intent(in), optional :: ms integer(ESMF_KIND_I4), intent(in), optional :: us integer(ESMF_KIND_I4), intent(in), optional :: ns real(ESMF_KIND_R8), intent(in), optional :: d_r8 real(ESMF_KIND_R8), intent(in), optional :: h_r8 real(ESMF_KIND_R8), intent(in), optional :: m_r8 real(ESMF_KIND_R8), intent(in), optional :: s_r8 real(ESMF_KIND_R8), intent(in), optional :: ms_r8 real(ESMF_KIND_R8), intent(in), optional :: us_r8 real(ESMF_KIND_R8), intent(in), optional :: ns_r8 integer(ESMF_KIND_I4), intent(in), optional :: sN integer(ESMF_KIND_I8), intent(in), optional :: sN_i8 integer(ESMF_KIND_I4), intent(in), optional :: sD integer(ESMF_KIND_I8), intent(in), optional :: sD_i8 integer, intent(out), optional :: rcDESCRIPTION:
Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalSet() subroutine ESMF_TimeIntervalSetDurStart(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & startTime, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(in), optional :: yy integer(ESMF_KIND_I8), intent(in), optional :: yy_i8 integer(ESMF_KIND_I4), intent(in), optional :: mm integer(ESMF_KIND_I8), intent(in), optional :: mm_i8 integer(ESMF_KIND_I4), intent(in), optional :: d integer(ESMF_KIND_I8), intent(in), optional :: d_i8 integer(ESMF_KIND_I4), intent(in), optional :: h integer(ESMF_KIND_I4), intent(in), optional :: m integer(ESMF_KIND_I4), intent(in), optional :: s integer(ESMF_KIND_I8), intent(in), optional :: s_i8 integer(ESMF_KIND_I4), intent(in), optional :: ms integer(ESMF_KIND_I4), intent(in), optional :: us integer(ESMF_KIND_I4), intent(in), optional :: ns real(ESMF_KIND_R8), intent(in), optional :: d_r8 real(ESMF_KIND_R8), intent(in), optional :: h_r8 real(ESMF_KIND_R8), intent(in), optional :: m_r8 real(ESMF_KIND_R8), intent(in), optional :: s_r8 real(ESMF_KIND_R8), intent(in), optional :: ms_r8 real(ESMF_KIND_R8), intent(in), optional :: us_r8 real(ESMF_KIND_R8), intent(in), optional :: ns_r8 integer(ESMF_KIND_I4), intent(in), optional :: sN integer(ESMF_KIND_I8), intent(in), optional :: sN_i8 integer(ESMF_KIND_I4), intent(in), optional :: sD integer(ESMF_KIND_I8), intent(in), optional :: sD_i8 type(ESMF_Time), intent(in) :: startTime integer, intent(out), optional :: rcDESCRIPTION:
Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalSet() subroutine ESMF_TimeIntervalSetDurCal(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, calendar, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(in), optional :: yy integer(ESMF_KIND_I8), intent(in), optional :: yy_i8 integer(ESMF_KIND_I4), intent(in), optional :: mm integer(ESMF_KIND_I8), intent(in), optional :: mm_i8 integer(ESMF_KIND_I4), intent(in), optional :: d integer(ESMF_KIND_I8), intent(in), optional :: d_i8 integer(ESMF_KIND_I4), intent(in), optional :: h integer(ESMF_KIND_I4), intent(in), optional :: m integer(ESMF_KIND_I4), intent(in), optional :: s integer(ESMF_KIND_I8), intent(in), optional :: s_i8 integer(ESMF_KIND_I4), intent(in), optional :: ms integer(ESMF_KIND_I4), intent(in), optional :: us integer(ESMF_KIND_I4), intent(in), optional :: ns real(ESMF_KIND_R8), intent(in), optional :: d_r8 real(ESMF_KIND_R8), intent(in), optional :: h_r8 real(ESMF_KIND_R8), intent(in), optional :: m_r8 real(ESMF_KIND_R8), intent(in), optional :: s_r8 real(ESMF_KIND_R8), intent(in), optional :: ms_r8 real(ESMF_KIND_R8), intent(in), optional :: us_r8 real(ESMF_KIND_R8), intent(in), optional :: ns_r8 integer(ESMF_KIND_I4), intent(in), optional :: sN integer(ESMF_KIND_I8), intent(in), optional :: sN_i8 integer(ESMF_KIND_I4), intent(in), optional :: sD integer(ESMF_KIND_I8), intent(in), optional :: sD_i8 type(ESMF_Calendar), intent(in) :: calendar integer, intent(out), optional :: rcDESCRIPTION:
Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:
INTERFACE:
! Private name; call using ESMF_TimeIntervalSet() subroutine ESMF_TimeIntervalSetDurCalTyp(timeinterval, & yy, yy_i8, & mm, mm_i8, & d, d_i8, & h, m, & s, s_i8, & ms, us, ns, & d_r8, h_r8, m_r8, s_r8, & ms_r8, us_r8, ns_r8, & sN, sN_i8, sD, sD_i8, & calendarType, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval integer(ESMF_KIND_I4), intent(in), optional :: yy integer(ESMF_KIND_I8), intent(in), optional :: yy_i8 integer(ESMF_KIND_I4), intent(in), optional :: mm integer(ESMF_KIND_I8), intent(in), optional :: mm_i8 integer(ESMF_KIND_I4), intent(in), optional :: d integer(ESMF_KIND_I8), intent(in), optional :: d_i8 integer(ESMF_KIND_I4), intent(in), optional :: h integer(ESMF_KIND_I4), intent(in), optional :: m integer(ESMF_KIND_I4), intent(in), optional :: s integer(ESMF_KIND_I8), intent(in), optional :: s_i8 integer(ESMF_KIND_I4), intent(in), optional :: ms integer(ESMF_KIND_I4), intent(in), optional :: us integer(ESMF_KIND_I4), intent(in), optional :: ns real(ESMF_KIND_R8), intent(in), optional :: d_r8 real(ESMF_KIND_R8), intent(in), optional :: h_r8 real(ESMF_KIND_R8), intent(in), optional :: m_r8 real(ESMF_KIND_R8), intent(in), optional :: s_r8 real(ESMF_KIND_R8), intent(in), optional :: ms_r8 real(ESMF_KIND_R8), intent(in), optional :: us_r8 real(ESMF_KIND_R8), intent(in), optional :: ns_r8 integer(ESMF_KIND_I4), intent(in), optional :: sN integer(ESMF_KIND_I8), intent(in), optional :: sN_i8 integer(ESMF_KIND_I4), intent(in), optional :: sD integer(ESMF_KIND_I8), intent(in), optional :: sD_i8 type(ESMF_CalendarType), intent(in) :: calendarType integer, intent(out), optional :: rcDESCRIPTION:
Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:
INTERFACE:
subroutine ESMF_TimeIntervalValidate(timeinterval, options, rc)ARGUMENTS:
type(ESMF_TimeInterval), intent(inout) :: timeinterval character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Checks whether a timeinterval is valid. If fractional value, denominator must be non-zero. The options control the type of validation.
The arguments are:
The Clock class advances model time and tracks its associated date on a specified Calendar. It stores start time, stop time, current time, previous time, and a time step. It can also store a reference time, typically the time instant at which a simulation originally began. For a restart run, the reference time can be different than the start time, when the application execution resumes.
A user can call the ESMF_ClockSet method and reset the time step as desired.
A Clock also stores a list of Alarms, which can be set to flag events that occur at a specified time instant or at a specified time interval. See Section 38.1 for details on how to use Alarms.
There are methods for setting and getting the Times and Alarms associated with a Clock. Methods are defined for advancing the Clock's current time, checking if the stop time has been reached, reversing direction, and synchronizing with a real clock.
DESCRIPTION:
Specifies the time-stepping direction of a clock. Use with "direction"
argument to methods ESMF_ClockSet() and ESMF_ClockGet().
Cannot be used with method ESMF_ClockCreate(), since it only
initializes a clock in the default forward mode; a clock must be advanced
(timestepped) at least once before reversing direction via
ESMF_ClockSet(). This also holds true for negative timestep clocks
which are initialized (created) with stopTime < startTime, since "forward"
means timestepping from startTime towards stopTime
(see ESMF_MODE_FORWARD below).
"Forward" and "reverse" directions are distinct from postive and negative timesteps. "Forward" means timestepping in the direction established at ESMF_ClockCreate(), from startTime towards stopTime, regardless of the timestep sign. "Reverse" means timestepping in the opposite direction, back towards the clock's startTime, regardless of the timestep sign.
Clocks and alarms run in reverse in such a way that the state of a clock and its alarms after each time step is precisely replicated as it was in forward time-stepping mode. All methods which query clock and alarm state will return the same result for a given timeStep, regardless of the direction of arrival.
Valid values are:
The following is a typical sequence for using a Clock in a geophysical model.
At initialize:
At run:
At finalize:
The following code example illustrates Clock usage.
! !PROGRAM: ESMF_ClockEx - Clock initialization and time-stepping ! ! !DESCRIPTION: ! ! This program shows an example of how to create, initialize, advance, and ! examine a basic clock !----------------------------------------------------------------------------- ! ESMF Framework module use ESMF_Mod implicit none ! instantiate a clock type(ESMF_Clock) :: clock ! instantiate time_step, start and stop times type(ESMF_TimeInterval) :: timeStep type(ESMF_Time) :: startTime type(ESMF_Time) :: stopTime ! local variables for Get methods type(ESMF_Time) :: currTime integer(ESMF_KIND_I8) :: advanceCount integer :: YY, MM, DD, H, M, S ! return code integer :: rc
! initialize ESMF framework call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGORIAN, rc=rc)
This example shows how to create and initialize an ESMF_Clock.
! initialize time interval to 2 days, 4 hours (6 timesteps in 13 days) call ESMF_TimeIntervalSet(timeStep, d=2, h=4, rc=rc)
! initialize start time to 4/1/2003 2:24:00 ( 1/10 of a day ) call ESMF_TimeSet(startTime, yy=2003, mm=4, dd=1, h=2, m=24, rc=rc)
! initialize stop time to 4/14/2003 2:24:00 ( 1/10 of a day ) call ESMF_TimeSet(stopTime, yy=2003, mm=4, dd=14, h=2, m=24, rc=rc)
! initialize the clock with the above values clock = ESMF_ClockCreate("Clock 1", timeStep, startTime, stopTime, rc=rc)
This example shows how to time-step an ESMF_Clock.
! time step clock from start time to stop time do while (.not.ESMF_ClockIsStopTime(clock, rc))
call ESMF_ClockPrint(clock, "currTime string", rc)
call ESMF_ClockAdvance(clock, rc=rc)
end do
This example shows how to examine an ESMF_Clock.
! get the clock's final current time call ESMF_ClockGet(clock, currTime=currTime, rc=rc)
call ESMF_TimeGet(currTime, yy=YY, mm=MM, dd=DD, h=H, m=M, s=S, rc=rc) print *, "The clock's final current time is ", YY, "/", MM, "/", DD, & " ", H, ":", M, ":", S
! get the number of times the clock was advanced call ESMF_ClockGet(clock, advanceCount=advanceCount, rc=rc) print *, "The clock was advanced ", advanceCount, " times."
This example shows how to time-step an ESMF_Clock in reverse mode.
call ESMF_ClockSet(clock, direction=ESMF_MODE_REVERSE, rc=rc)
! time step clock in reverse from stop time back to start time; ! note use of ESMF_ClockIsDone() rather than ESMF_ClockIsStopTime() do while (.not.ESMF_ClockIsDone(clock, rc))
call ESMF_ClockPrint(clock, "currTime string", rc)
call ESMF_ClockAdvance(clock, rc=rc)
end do
This example shows how to destroy an ESMF_Clock.
! destroy clock call ESMF_ClockDestroy(clock, rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
end program ESMF_ClockEx
INTERFACE:
interface operator(==) if (clock1 == clock2) then ... endif OR result = (clock1 == clock2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Clock), intent(in) :: clock1 type(ESMF_Clock), intent(in) :: clock2DESCRIPTION:
Overloads the (==) operator for the ESMF_Clock class. Compare two clocks for equality; return true if equal, false otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical for clocks created as copies.
The arguments are:
INTERFACE:
interface operator(/=) if (clock1 /= clock2) then ... endif OR result = (clock1 /= clock2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Clock), intent(in) :: clock1 type(ESMF_Clock), intent(in) :: clock2DESCRIPTION:
Overloads the (/=) operator for the ESMF_Clock class. Compare two clocks for inequality; return true if not equal, false otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical for clocks created as copies.
The arguments are:
INTERFACE:
subroutine ESMF_ClockAdvance(clock, timeStep, ringingAlarmList, & ringingAlarmCount, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock type(ESMF_TimeInterval), intent(inout), optional :: timeStep type(ESMF_Alarm), dimension(:), intent(out), optional :: ringingAlarmList integer, intent(out), optional :: ringingAlarmCount integer, intent(out), optional :: rcDESCRIPTION:
Advances the clock's current time by one time step: either the clock's, or the passed-in timeStep (see below). When the clock is in ESMF_MODE_FORWARD (default), this method adds the timeStep to the clock's current time. In ESMF_MODE_REVERSE, timeStep is subtracted from the current time. In either case, timeStep can be positive or negative. See the "direction" argument in method ESMF_ClockSet(). ESMF_ClockAdvance() optionally returns a list and number of ringing ESMF_Alarms. See also method ESMF_ClockGetRingingAlarms().
The arguments are:
INTERFACE:
! Private name; call using ESMF_ClockCreate() function ESMF_ClockCreateNew(name, timeStep, startTime, stopTime, & runDuration, runTimeStepCount, refTime, rc)RETURN VALUE:
type(ESMF_Clock) :: ESMF_ClockCreateNewARGUMENTS:
character (len=*), intent(in), optional :: name type(ESMF_TimeInterval), intent(in) :: timeStep type(ESMF_Time), intent(in) :: startTime type(ESMF_Time), intent(in), optional :: stopTime type(ESMF_TimeInterval), intent(in), optional :: runDuration integer, intent(in), optional :: runTimeStepCount type(ESMF_Time), intent(in), optional :: refTime integer, intent(out), optional :: rcDESCRIPTION:
Creates and sets the initial values in a new ESMF_Clock.
This is a private method; invoke via the public overloaded entry point ESMF_ClockCreate().
The arguments are:
INTERFACE:
! Private name; call using ESMF_ClockCreate() function ESMF_ClockCreateCopy(clock, rc)RETURN VALUE:
type(ESMF_Clock) :: ESMF_ClockCreateCopyARGUMENTS:
type(ESMF_Clock), intent(in) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Creates a copy of a given ESMF_Clock.
This is a private method; invoke via the public overloaded entry point ESMF_ClockCreate().
The arguments are:
INTERFACE:
subroutine ESMF_ClockDestroy(clock, rc)ARGUMENTS:
type(ESMF_Clock) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Releases all resources associated with this ESMF_Clock.
The arguments are:
INTERFACE:
subroutine ESMF_ClockGet(clock, name, timeStep, startTime, stopTime, & runDuration, runTimeStepCount, refTime, & currTime, prevTime, currSimTime, prevSimTime, & calendar, calendarType, timeZone, advanceCount, & alarmCount, direction, rc)ARGUMENTS:
type(ESMF_Clock), intent(in) :: clock character (len=*), intent(out), optional :: name type(ESMF_TimeInterval), intent(out), optional :: timeStep type(ESMF_Time), intent(out), optional :: startTime type(ESMF_Time), intent(out), optional :: stopTime type(ESMF_TimeInterval), intent(out), optional :: runDuration real(ESMF_KIND_R8), intent(out), optional :: runTimeStepCount type(ESMF_Time), intent(out), optional :: refTime type(ESMF_Time), intent(out), optional :: currTime type(ESMF_Time), intent(out), optional :: prevTime type(ESMF_TimeInterval), intent(out), optional :: currSimTime type(ESMF_TimeInterval), intent(out), optional :: prevSimTime type(ESMF_Calendar), intent(out), optional :: calendar type(ESMF_CalendarType), intent(out), optional :: calendarType integer, intent(out), optional :: timeZone integer(ESMF_KIND_I8), intent(out), optional :: advanceCount integer, intent(out), optional :: alarmCount type(ESMF_Direction), intent(out), optional :: direction integer, intent(out), optional :: rcDESCRIPTION:
Gets one or more of the properties of an ESMF_Clock.
The arguments are:
INTERFACE:
subroutine ESMF_ClockGetAlarm(clock, name, alarm, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock character (len=*), intent(in) :: name type(ESMF_Alarm), intent(out) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Gets the alarm whose name is the value of name in the clock's ESMF_Alarm list.
The arguments are:
INTERFACE:
subroutine ESMF_ClockGetAlarmList(clock, alarmListType, & alarmList, alarmCount, timeStep, rc)ARGUMENTS:
type(ESMF_Clock), intent(in) :: clock type(ESMF_AlarmListType), intent(in) :: alarmListType type(ESMF_Alarm), dimension(:), intent(out) :: alarmList integer, intent(out) :: alarmCount type(ESMF_TimeInterval), intent(in), optional :: timeStep integer, intent(out), optional :: rcDESCRIPTION:
Gets the clock's list of alarms.
The arguments are:
ESMF_ALARMLIST_NEXTRINGING : Return only those alarms that will ring upon the next clock time step. Can optionally specify argument timeStep (see below) to use instead of the clock's. See also method ESMF_AlarmWillRingNext() for checking a single alarm.
ESMF_ALARMLIST_PREVRINGING : Return only those alarms that were ringing on the previous ESMF_Clock time step. See also method ESMF_AlarmWasPrevRinging() for checking a single alarm.
ESMF_ALARMLIST_RINGING : Returns only those clock alarms that are currently ringing. See also method ESMF_ClockAdvance() for getting the list of ringing alarms subsequent to a time step. See also method ESMF_AlarmIsRinging() for checking a single alarm.
INTERFACE:
subroutine ESMF_ClockGetNextTime(clock, nextTime, timeStep, rc)ARGUMENTS:
type(ESMF_Clock), intent(in) :: clock type(ESMF_Time), intent(out) :: nextTime type(ESMF_TimeInterval), intent(inout), optional :: timeStep integer, intent(out), optional :: rcDESCRIPTION:
Calculates what the next time of the clock will be, based on the clock's current time step or an optionally passed-in timeStep.
The arguments are:
INTERFACE:
function ESMF_ClockIsDone(clock, rc)RETURN VALUE:
logical :: ESMF_ClockIsDoneARGUMENTS:
type(ESMF_Clock), intent(in) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Returns true if currentTime is greater than or equal to stopTime in ESMF_MODE_FORWARD, or if currentTime is less than or equal to startTime in ESMF_MODE_REVERSE. It returns false otherwise.
The arguments are:
INTERFACE:
function ESMF_ClockIsReverse(clock, rc)RETURN VALUE:
logical :: ESMF_ClockIsReverseARGUMENTS:
type(ESMF_Clock), intent(in) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Returns true if clock is in ESMF_MODE_REVERSE, and false if in ESMF_MODE_FORWARD. Allows convenient use in "if" and "do while" constructs. Alternative to ESMF_ClockGet(...direction=...).
The arguments are:
INTERFACE:
function ESMF_ClockIsStopTime(clock, rc)RETURN VALUE:
logical :: ESMF_ClockIsStopTimeARGUMENTS:
type(ESMF_Clock), intent(in) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Returns true if the clock has reached or exceeded its stop time, and false otherwise.
The arguments are:
INTERFACE:
function ESMF_ClockIsStopTimeEnabled(clock, rc)RETURN VALUE:
logical :: ESMF_ClockIsStopTimeEnabledARGUMENTS:
type(ESMF_Clock), intent(in) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Returns true if the clock's stop time is set and enabled, and false otherwise.
The arguments are:
INTERFACE:
subroutine ESMF_ClockPrint(clock, options, rc)ARGUMENTS:
type(ESMF_Clock), intent(in) :: clock character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints out an ESMF_Clock's properties to stdout, in
support of testing and debugging. The options control the type of
information and level of detail.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
subroutine ESMF_ClockSet(clock, name, timeStep, startTime, stopTime, & runDuration, runTimeStepCount, refTime, & currTime, advanceCount, direction, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock character (len=*), intent(in), optional :: name type(ESMF_TimeInterval), intent(inout), optional :: timeStep type(ESMF_Time), intent(inout), optional :: startTime type(ESMF_Time), intent(inout), optional :: stopTime type(ESMF_TimeInterval), intent(inout), optional :: runDuration integer, intent(in), optional :: runTimeStepCount type(ESMF_Time), intent(inout), optional :: refTime type(ESMF_Time), intent(inout), optional :: currTime integer(ESMF_KIND_I8), intent(in), optional :: advanceCount type(ESMF_Direction), intent(in), optional :: direction integer, intent(out), optional :: rcDESCRIPTION:
Sets/resets one or more of the properties of an ESMF_Clock that was previously initialized via ESMF_ClockCreate().
The arguments are:
INTERFACE:
subroutine ESMF_ClockStopTimeDisable(clock, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Disables a ESMF_Clock's stop time; ESMF_ClockIsStopTime() will always return false, allowing a clock to run past its stopTime.
The arguments are:
INTERFACE:
subroutine ESMF_ClockStopTimeEnable(clock, stopTime, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock type(ESMF_Time), intent(in), optional :: stopTime integer, intent(out), optional :: rcDESCRIPTION:
Enables a ESMF_Clock's stop time, allowing ESMF_ClockIsStopTime() to respect the stopTime.
The arguments are:
INTERFACE:
subroutine ESMF_ClockSyncToRealTime(clock, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock integer, intent(out), optional :: rcDESCRIPTION:
Sets a clock's current time to the wall clock time. It is accurate to the nearest second.
The arguments are:
INTERFACE:
subroutine ESMF_ClockValidate(clock, options, rc)ARGUMENTS:
type(ESMF_Clock), intent(inout) :: clock character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Checks whether a clock is valid. Must have a valid startTime and timeStep. If clock has a stopTime, its currTime must be within startTime to stopTime, inclusive; also startTime's and stopTime's calendars must be the same.
The arguments are:
The Alarm class identifies events that occur at specific Times or specific TimeIntervals by returning a true value at those times or subsequent times, and a false value otherwise.
DESCRIPTION:
Specifies the characteristics of Alarms that populate
a retrieved Alarm list.
Valid values are:
Alarms are used in conjunction with Clocks (see Section 37.1). Multiple Alarms can be associated with a Clock. During the ESMF_ClockAdvance() method, a Clock iterates over its internal Alarms to determine if any are ringing. Alarms ring when a specified Alarm time is reached or exceeded, taking into account whether the time step is positive or negative. In ESMF_MODE_REVERSE (see Section 37.1), alarms ring in reverse, i.e., they begin ringing when they originally ended, and end ringing when they originally began. On completion of the time advance call, the Clock optionally returns a list of ringing alarms.
Each ringing Alarm can then be processed using Alarm methods for identifying, turning off, disabling or resetting the Alarm.
Alarm methods are defined for obtaining the ringing state, turning the ringer on/off, enabling/disabling the Alarm, and getting/setting associated times.
The following example shows how to set and process Alarms.
! !PROGRAM: ESMF_AlarmEx - Alarm examples ! ! !DESCRIPTION: ! ! This program shows an example of how to create, initialize, and process ! alarms associated with a clock. !----------------------------------------------------------------------------- ! ESMF Framework module use ESMF_Mod implicit none ! instantiate time_step, start, stop, and alarm times type(ESMF_TimeInterval) :: timeStep, alarmInterval type(ESMF_Time) :: alarmTime, startTime, stopTime ! instantiate a clock type(ESMF_Clock) :: clock ! instantiate Alarm lists integer, parameter :: NUMALARMS = 2 type(ESMF_Alarm) :: alarm(NUMALARMS) ! local variables for Get methods integer :: ringingAlarmCount ! at any time step (0 to NUMALARMS) ! name, loop counter, result code character (len=ESMF_MAXSTR) :: name integer :: i, rc
! initialize ESMF framework call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGORIAN, rc=rc)
This example shows how to create and initialize an ESMF_Clock.
! initialize time interval to 1 day call ESMF_TimeIntervalSet(timeStep, d=1, rc=rc)
! initialize start time to 9/1/2003 call ESMF_TimeSet(startTime, yy=2003, mm=9, dd=1, rc=rc)
! initialize stop time to 9/30/2003 call ESMF_TimeSet(stopTime, yy=2003, mm=9, dd=30, rc=rc)
! create & initialize the clock with the above values clock = ESMF_ClockCreate("The Clock", timeStep, startTime, stopTime, & rc=rc)
This example shows how to create and initialize two ESMF_Alarms and associate them with the clock.
! Initialize first alarm to be a one-shot on 9/15/2003 and associate ! it with the clock call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=15, rc=rc)
alarm(1) = ESMF_AlarmCreate("Example alarm 1", clock, & ringTime=alarmTime, rc=rc)
! Initialize second alarm to ring on a 1 week interval starting 9/1/2003 ! and associate it with the clock call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=1, rc=rc)
call ESMF_TimeIntervalSet(alarmInterval, d=7, rc=rc)
! Alarm gets default name "Alarm002" alarm(2) = ESMF_AlarmCreate(clock=clock, ringTime=alarmTime, & ringInterval=alarmInterval, rc=rc)
This example shows how to advance an ESMF_Clock and process any resulting ringing alarms.
! time step clock from start time to stop time do while (.not.ESMF_ClockIsStopTime(clock, rc))
! perform time step and get the number of any ringing alarms call ESMF_ClockAdvance(clock, ringingAlarmCount=ringingAlarmCount, & rc=rc)
call ESMF_ClockPrint(clock, "currTime string", rc)
! check if alarms are ringing if (ringingAlarmCount > 0) then print *, "number of ringing alarms = ", ringingAlarmCount do i = 1, NUMALARMS if (ESMF_AlarmIsRinging(alarm(i), rc)) then
call ESMF_AlarmGet(alarm(i), name=name, rc=rc) print *, trim(name), " is ringing!"
! after processing alarm, turn it off call ESMF_AlarmRingerOff(alarm(i), rc)
end if ! this alarm is ringing end do ! each ringing alarm endif ! ringing alarms end do ! timestep clock
This example shows how to destroy ESMF_Alarms and ESMF_Clocks.
call ESMF_AlarmDestroy(alarm(1), rc=rc)
call ESMF_AlarmDestroy(alarm(2), rc=rc)
call ESMF_ClockDestroy(clock, rc=rc)
! finalize ESMF framework call ESMF_Finalize(rc=rc)
end program ESMF_AlarmEx
The Alarm class is designed as a deep, dynamically allocatable class, based on a pointer type. This allows for both indirect and direct manipulation of alarms. Indirect alarm manipulation is where ESMF_Alarm API methods, such as ESMF_AlarmRingerOff(), are invoked on alarm references (pointers) returned from ESMF_Clock queries such as "return ringing alarms." Since the method is performed on an alarm reference, the actual alarm held by the clock is affected, not just a user's local copy. Direct alarm manipulation is the more common case where alarm API methods are invoked on the original alarm objects created by the user.
For consistency, the ESMF_Clock class is also designed as a deep, dynamically allocatable class.
An additional benefit from this approach is that Clocks and Alarms can be created and used from anywhere in a user's code without regard to the scope in which they were created. In constrast, statically created Alarms and Clocks would disappear if created within a user's routine that returns, whereas dynamically allocated Alarms and Clocks will persist until explicitly destroyed by the user.
INTERFACE:
interface operator(==) if (alarm1 == alarm2) then ... endif OR result = (alarm1 == alarm2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Alarm), intent(in) :: alarm1 type(ESMF_Alarm), intent(in) :: alarm2DESCRIPTION:
Overloads the (==) operator for the ESMF_Alarm class. Compare two alarms for equality; return true if equal, false otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical for alarms created as copies.
The arguments are:
INTERFACE:
interface operator(/=) if (alarm1 /= alarm2) then ... endif OR result = (alarm1 /= alarm2)RETURN VALUE:
logical :: resultARGUMENTS:
type(ESMF_Alarm), intent(in) :: alarm1 type(ESMF_Alarm), intent(in) :: alarm2DESCRIPTION:
Overloads the (/=) operator for the ESMF_Alarm class. Compare two alarms for inequality; return true if not equal, false otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical for alarms created as copies.
The arguments are:
INTERFACE:
! Private name; call using ESMF_AlarmCreate() function ESMF_AlarmCreateNew(name, clock, ringTime, ringInterval, & stopTime, ringDuration, & ringTimeStepCount, & refTime, enabled, sticky, rc)RETURN VALUE:
type(ESMF_Alarm) :: ESMF_AlarmCreateNewARGUMENTS:
character (len=*), intent(in), optional :: name type(ESMF_Clock), intent(in) :: clock type(ESMF_Time), intent(in), optional :: ringTime type(ESMF_TimeInterval), intent(in), optional :: ringInterval type(ESMF_Time), intent(in), optional :: stopTime type(ESMF_TimeInterval), intent(in), optional :: ringDuration integer, intent(in), optional :: ringTimeStepCount type(ESMF_Time), intent(in), optional :: refTime logical, intent(in), optional :: enabled logical, intent(in), optional :: sticky integer, intent(out), optional :: rcDESCRIPTION:
Creates and sets the initial values in a new ESMF_Alarm.
In ESMF_MODE_REVERSE (see Section 37.1), alarms ring in reverse, i.e., they begin ringing when they originally ended, and end ringing when they originally began.
This is a private method; invoke via the public overloaded entry point ESMF_AlarmCreate().
The arguments are:
INTERFACE:
! Private name; call using ESMF_AlarmCreate() function ESMF_AlarmCreateCopy(alarm, rc)RETURN VALUE:
type(ESMF_Alarm) :: ESMF_AlarmCreateCopyARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Creates a copy of a given ESMF_Alarm.
This is a private method; invoke via the public overloaded entry point ESMF_AlarmCreate().
The arguments are:
INTERFACE:
subroutine ESMF_AlarmDestroy(alarm, rc)ARGUMENTS:
type(ESMF_Alarm) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Releases all resources associated with this ESMF_Alarm.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmDisable(alarm, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Disables an ESMF_Alarm.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmEnable(alarm, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Enables an ESMF_Alarm to function.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmGet(alarm, name, clock, ringTime, prevRingTime, & ringInterval, stopTime, ringDuration, & ringTimeStepCount, timeStepRingingCount, & ringBegin, ringEnd, refTime, ringing, & ringingOnPrevTimeStep, enabled, sticky, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm character (len=*), intent(out), optional :: name type(ESMF_Clock), intent(out), optional :: clock type(ESMF_Time), intent(out), optional :: ringTime type(ESMF_Time), intent(out), optional :: prevRingTime type(ESMF_TimeInterval), intent(out), optional :: ringInterval type(ESMF_Time), intent(out), optional :: stopTime type(ESMF_TimeInterval), intent(out), optional :: ringDuration integer, intent(out), optional :: ringTimeStepCount integer, intent(out), optional :: timeStepRingingCount type(ESMF_Time), intent(out), optional :: ringBegin type(ESMF_Time), intent(out), optional :: ringEnd type(ESMF_Time), intent(out), optional :: refTime logical, intent(out), optional :: ringing logical, intent(out), optional :: ringingOnPrevTimeStep logical, intent(out), optional :: enabled logical, intent(out), optional :: sticky integer, intent(out), optional :: rcDESCRIPTION:
Gets one or more of an ESMF_Alarm's properties.
The arguments are:
INTERFACE:
function ESMF_AlarmIsEnabled(alarm, rc)RETURN VALUE:
logical :: ESMF_AlarmIsEnabledARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Check if ESMF_Alarm is enabled.
The arguments are:
INTERFACE:
function ESMF_AlarmIsRinging(alarm, rc)RETURN VALUE:
logical :: ESMF_AlarmIsRingingARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Check if ESMF_Alarm is ringing.
See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_RINGING, ...) to get a list of all ringing alarms belonging to an ESMF_Clock.
The arguments are:
INTERFACE:
function ESMF_AlarmIsSticky(alarm, rc)RETURN VALUE:
logical :: ESMF_AlarmIsStickyARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Check if alarm is sticky.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmNotSticky(alarm, ringDuration, & ringTimeStepCount, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm type(ESMF_TimeInterval), intent(in), optional :: ringDuration integer, intent(in), optional :: ringTimeStepCount integer, intent(out), optional :: rcDESCRIPTION:
Unset an ESMF_Alarm's sticky flag; once alarm is ringing, it turns itself off after ringDuration.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmPrint(alarm, options, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints out an ESMF_Alarm's properties to stdout, in support
of testing and debugging. The options control the type of information
and level of detail.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmRingerOff(alarm, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Turn off an ESMF_Alarm; unsets ringing state. For a sticky alarm, this method must be called to turn off its ringing state. This is true for either ESMF_MODE_FORWARD (default) or ESMF_MODE_REVERSE. See Section 37.1.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmRingerOn(alarm, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Turn on an ESMF_Alarm; sets ringing state.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmSet(alarm, name, clock, ringTime, ringInterval, & stopTime, ringDuration, ringTimeStepCount, & refTime, ringing, enabled, sticky, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm character (len=*), intent(in), optional :: name type(ESMF_Clock), intent(in), optional :: clock type(ESMF_Time), intent(in), optional :: ringTime type(ESMF_TimeInterval), intent(in), optional :: ringInterval type(ESMF_Time), intent(in), optional :: stopTime type(ESMF_TimeInterval), intent(in), optional :: ringDuration integer, intent(in), optional :: ringTimeStepCount type(ESMF_Time), intent(in), optional :: refTime logical, intent(in), optional :: ringing logical, intent(in), optional :: enabled logical, intent(in), optional :: sticky integer, intent(out), optional :: rcDESCRIPTION:
Sets/resets one or more of the properties of an ESMF_Alarm that was previously initialized via ESMF_AlarmCreate().
The arguments are:
INTERFACE:
subroutine ESMF_AlarmSticky(alarm, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Set an ESMF_Alarm's sticky flag; once alarm is ringing, it remains ringing until ESMF_AlarmRingerOff() is called. There is an implicit limitation that in order to properly reverse timestep through a ring end time in ESMF_MODE_REVERSE, that time must have already been traversed in the forward direction. This is due to the fact that the Time Manager cannot predict when user code will call ESMF_AlarmRingerOff(). An error message will be logged when this limitation is not satisfied.
The arguments are:
INTERFACE:
subroutine ESMF_AlarmValidate(alarm, options, rc)ARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Performs a validation check on an ESMF_Alarm's properties. Must have a valid ringTime, set either directly or indirectly via ringInterval. See ESMF_AlarmCreate().
The arguments are:
INTERFACE:
function ESMF_AlarmWasPrevRinging(alarm, rc)RETURN VALUE:
logical :: ESMF_AlarmWasPrevRingingARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm integer, intent(out), optional :: rcDESCRIPTION:
Check if ESMF_Alarm was ringing on the previous clock timestep.
See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_PREVRINGING, ...) get a list of all alarms belonging to a ESMF_Clock that were ringing on the previous time step.
The arguments are:
INTERFACE:
function ESMF_AlarmWillRingNext(alarm, timeStep, rc)RETURN VALUE:
logical :: ESMF_AlarmWillRingNextARGUMENTS:
type(ESMF_Alarm), intent(inout) :: alarm type(ESMF_TimeInterval), intent(in), optional :: timeStep integer, intent(out), optional :: rcDESCRIPTION:
Check if ESMF_Alarm will ring on the next clock timestep, either the current clock timestep or a passed-in timestep.
See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_NEXTRINGING, ...) to get a list of all alarms belonging to a ESMF_Clock that will ring on the next time step.
The arguments are:
ESMF Configuration Management is based on NASA DAO's
Inpak 90 package, a Fortran 90 collection of routines/functions
for accessing Resource Files in ASCII format.The package
is optimized for minimizing formatted I/O, performing all of its
string operations in memory using Fortran intrinsic functions.
Module is implemented in Fortran.
Back in the 70's Eli Isaacson wrote IOPACK in Fortran 66. In June of 1987 Arlindo da Silva wrote Inpak77 using Fortran 77 string functions; Inpak 77 is a vastly simplified IOPACK, but has its own goodies not found in IOPACK. Inpak 90 removes some obsolete functionality in Inpak77, and parses the whole resource file in memory for performance.
A Resource File (RF) is a text file consisting of list of label-value pairs. There is a limit of 250 characters per line and the Resource File can contain a maximum of 200 records. Each label should be followed by some data, the value. An example Resource File follows. It is the file used in the example below.
# This is an example Resource File. # It contains a list of <label,value> pairs. # The colon after the label is required. # The values after the label can be an list. # Multiple types are authorized. my_file_names: jan87.dat jan88.dat jan89.dat # all strings constants: 3.1415 25 # float and integer my_favorite_colors: green blue 022 # Or, the data can be a list of single value pairs. # It is simplier to retrieve data in this format: radius_of_the_earth: 6.37E6 parameter_1: 89 parameter_2: 78.2 input_file_name: dummy_input.netcdf # Or, the data can be located in a table using the following # syntax: my_table_name:: 1000 3000 263.0 925 3000 263.0 850 3000 263.0 700 3000 269.0 500 3000 287.0 400 3000 295.8 300 3000 295.8 ::
Note that the colon after the label is required and that the double colon is required to declare tabular data.
Resource files are intended for random access (except between ::'s in a table definition). This means that order in which a particular label-value pair is retreived is not dependent upon the original order of the pairs. The only exception to this, however, is when the same label appears multiple times within the Resource File.
This example/test code performs simple Config/Resource File routines. It does not include attaching a Config to a component. The important thing to remember there is that you can have one Config per component.
There are two methodologies for accessing data in a Resource File. This example will demonstrate both.
Note the API section contains a complete description of arguments in the methods/functions demonstrated in this example.
The following are the variable declarations used as arguments in the following code fragments. They represent the locals names for the variables listed in the Resource File (RF). Note they do not need to be the same.
character(ESMF_MAXSTR) :: fname ! config file name character*20 :: fn1, fn2, fn3, input_file ! strings to be read in integer :: rc ! error return code (0 is OK) integer :: i_n ! the first constant in the RF real :: param_1 ! the second constant in the RF real :: radius ! radius of the earth real :: table(7,3) ! an array to hold the table in the RF type(ESMF_Config) :: cf ! the Config itself
While there are two methodologies for accessing the data within a Resource File, there is only one way to create the initial Config and load its ASCII text into memory. This is the first step in the process.
Note that subsequent calls to ESMF_ConfigLoadFile will OVERWRITE the current Config NOT append to it. There is no means of appending to a Config.
cf = ESMF_ConfigCreate(rc) ! Create the empty Config
fname = "myResourceFile.rc" ! Name the Resource File call ESMF_ConfigLoadFile(cf, fname, rc=rc) ! Load the Resource File into the ! empty Config
Remember, that the order in which a particular label/value pair is retrieved is not dependent upon the order which they exist within the Resource File.
call ESMF_ConfigGetAttribute(cf, radius, label='radius_of_the_earth:', & default=1.0, rc=rc)
Note that the colon must be included in the label string when using this methodology. It is also important to provide a default value in case the label does not exist in the file
This methodology works for all types. The following is an example of retrieving a string:
call ESMF_ConfigGetAttribute(cf, input_file, label='input_file_name:', & default="./default.nc", rc=rc)
The same code fragment can be used to demonstrate what happens when the label is not present. Note that "file_name" does not exist in the Resource File. The result of its abscense is the default value provided in the call.
call ESMF_ConfigGetAttribute(cf, input_file, label='file_name:', & default="./default.nc", rc=rc)
A second reminder that the order in which a particular label/value pair is retrieved is not dependent upon the order which they exist within the Resource File. The label used in this method allows the user to skip to any point in the file.
call ESMF_ConfigFindLabel(cf, 'constants:', rc=rc) ! Step a) Find the ! label
Two constants, radius and i_n, can now be retrieved without having to specify their label or use an array. They are also different types.
call ESMF_ConfigGetAttribute(cf, param_1, rc=rc) ! Step b) read in the first ! constant in the sequence call ESMF_ConfigGetAttribute(cf, i_n, rc=rc) ! Step c) read in the second ! constant in the sequence
This methodology also works with strings.
call ESMF_ConfigFindLabel(cf, 'my_file_names:', rc=rc) !Step a) find the label
call ESMF_ConfigGetAttribute(cf, fn1, rc=rc) !Step b) retrieve the first filename call ESMF_ConfigGetAttribute(cf, fn2, rc=rc) !Step c) retrieve the second filename call ESMF_ConfigGetAttribute(cf, fn3, rc=rc) !Step d) retrieve the third filename
To access tabular data, the user must use the multi-value method.
call ESMF_ConfigFindLabel(cf, 'my_table_name::', rc=rc) ! Step a) Set the label location ! to the beginning of the ! table
Subsequently, call ESMF_ConfigNextLine() is used to move the location to the next row of the table. The example table in the Resource File contains 7 rows and 3 columns (7,3).
do i = 1, 7 call ESMF_ConfigNextLine(cf, rc=rc) ! Step b) Increment the rows do j = 1, 3 ! Step c) Fill in the table call ESMF_ConfigGetAttribute(cf, table(i,j), rc=rc) enddo enddo
The work with the configuration file cf is finalized by call to ESMF_ConfigDestroy():
call ESMF_ConfigDestroy(cf, rc) ! Destroy the Config
INTERFACE:
type(ESMF_Config) function ESMF_ConfigCreate( rc )ARGUMENTS:
integer,intent(out), optional :: rcDESCRIPTION:
Instantiates an ESMF_Config object for use in subsequent calls.
The arguments are:
INTERFACE:
subroutine ESMF_ConfigDestroy( config, rc )ARGUMENTS:
type(ESMF_Config) :: config integer,intent(out), optional :: rcDESCRIPTION:
Destroys the config object.
The arguments are:
INTERFACE:
subroutine ESMF_ConfigFindLabel( config, label, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config character(len=*), intent(in) :: label integer, intent(out), optional :: rcDESCRIPTION:
Finds the label (key) string in the config object.
Since the search is done by looking for a string, possibly multi-worded, in the whole Config object, it is important to use special conventions to distinguish labels from other words. This is done in the Resource File by using the DAO convention to finish line labels with a (:) and table labels with a double colon (::).
The arguments are:
INTERFACE:
subroutine ESMF_ConfigGetAttribute( config, <value>, & label, default, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config <value argument>, see below for supported values character(len=*), intent(in), optional :: label character(len=*), intent(in), optional :: default integer, intent(out), optional :: rcDESCRIPTION:
Gets a value from the config object. When the value is a sequence of characters it will be terminated by the first white space.
Supported values for <value argument> are:
The arguments are:
INTERFACE:
subroutine ESMF_ConfigGetAttribute( config, <value list argument>, & count, label, default, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config <value list argument>, see below for values integer, intent(in) :: count character(len=*), intent(in), optional :: label character(len=*), intent(in), optional :: default integer, intent(out), optional :: rcDESCRIPTION:
Gets a list of values from the config object.
Supported values for <value list argument> are:
The arguments are:
INTERFACE:
subroutine ESMF_ConfigGetChar( config, value, label, default, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config character, intent(out) :: value character(len=*), intent(in), optional :: label character, intent(in), optional :: default integer, intent(out), optional :: rcDESCRIPTION:
Gets a character value from the config object.
The arguments are:
INTERFACE:
subroutine ESMF_ConfigGetDim( config, lineCount, columnCount, label, rc ) implicit none type(ESMF_Config), intent(inout) :: config ! ESMF Configuration integer, intent(out) :: lineCount integer, intent(out) :: columnCount character(len=*), intent(in), optional :: label ! label (if present) ! otherwise, current ! line integer, intent(out), optional :: rc ! Error codeDESCRIPTION:
Returns the number of lines in the table in lineCount and the maximum number of words in a table line in columnCount.
The arguments are:
INTERFACE:
integer function ESMF_ConfigGetLen( config, label, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config character(len=*), intent(in), optional :: label integer, intent(out), optional :: rcDESCRIPTION:
Gets the length of the line in words by counting words disregarding types. Returns the word count as an integer.
The arguments are:
INTERFACE:
subroutine ESMF_ConfigLoadFile( config, filename, delayout, unique, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config character(len=*), intent(in) :: filename type(ESMF_DELayout), intent(in), optional :: delayout logical, intent(in), optional :: unique integer, intent(out), optional :: rcDESCRIPTION:
Resource file with filename is loaded into memory.
The arguments are:
INTERFACE:
subroutine ESMF_ConfigNextLine( config, tableEnd, rc)ARGUMENTS:
type(ESMF_Config), intent(inout) :: config logical, intent(out), optional :: tableEnd integer, intent(out), optional:: rcDESCRIPTION:
Selects the next line (for tables).
The arguments are:
INTERFACE:
subroutine ESMF_ConfigSetAttribute( config, <value argument>, & label, rc )ARGUMENTS:
type(ESMF_Config), intent(inout) :: config <value argument>, see below for supported values character(len=*), intent(in), optional :: label integer, intent(out), optional :: rcDESCRIPTION:
Sets a value in the config object.
Supported values for <value argument> are:
The arguments are:
INTERFACE:
subroutine ESMF_ConfigValidate(config, options, rc)ARGUMENTS:
type(ESMF_Config), intent(inout) :: config character (len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Checks whether a config object is valid.
The arguments are:
The Log class consists of a variety of methods for writing error, warning, and informational messages to files. A default Log is created at ESMF initialization. Other Logs can be created later in the code by the user. Most LogErr methods take a Log as an optional argument and apply to the default Log when another Log is not specified. A set of standard return codes and associated messages are provided for error handling.
LogErr provides capabilities to store message entries in a buffer, which is flushed to a file, either when the buffer is full, or when the user calls an ESMF_LogFlush() method. Currently, the default is for the Log to flush after every ten entries. This can easily be changed by using the ESMF_LogSet() method and setting the maxElements property to another value. The ESMF_LogFlush() method is automatically called when the program exits by any means (program completion, halt on error, or when the Log is closed).
The user has the capability to halt the program on an error or on a warning by using the ESMF_LogSet() method with the halt property. When the halt property is set to ESMF_LOG_HALTWARNING, the program will stop on any and all warning or errors. When the halt property is set to ESMF_LOG_HALTERROR, the program will only halt only on errors. Lastly, the user can choose to never halt by setting the halt property to ESMF_LOG_HALTNEVER; this is the default.
LogErr will automatically put the PET number into the Log. Also, the user can either specify ESMF_LOG_SINGLE which writes all the entries to a single Log or ESMF_LOG_MULTI which writes entries to multiple Logs according to the PET number. To distinguish Logs from each other when using ESMF_LOG_MULTI, the PET number (in the format PETx.) will be prepended to the file name where x is the PET number.
Opening multiple log files and writing log messages from all the processors may affect the application performance while running on a large number of processors. For that reason, ESMF_LOG_NONE is provided to switch off the LogErr capability. All the LogErr methods have no effect in the ESMF_LOG_NONE mode.
Other options that are planned for LogErr are to adjust the verbosity of ouput, and to optionally write to stdout instead of file(s).
DESCRIPTION:
Specifies when to halt -- e.g., never, when a warning is issued, or when an
error message is encountered.
Valid values are:
DESCRIPTION:
Specifies what message level -- e.g., informational, warning,
error -- will be written to log files.
Valid values are:
DESCRIPTION:
Specifies a single log file, multiple log files (one per PET), or no log files.
Valid values are:
By default ESMF_Initialize() opens a default Log in ESMF_LOG_MULTI mode. ESMF handles the initialization and finalization of the default Log so the user can immediately start using it. If additional Log objects are desired, they must be explicitly created or opened using ESMF_LogOpen().
ESMF_LogOpen() requires a Log object and filename argument. Additionally, the user can specify single or multi Logs by setting the logtype property to ESMF_LOG_SINGLE or ESMF_LOG_MULTI. This is useful as the PET numbers are automatically added to the Log entries. A single Log will put all entries, regardless of PET number, into a single log while a multi Log will create multiple Logs with the PET number prepended to the filename and all entries will be written to their corresponding Log by their PET number.
By default, the Log file is not truncated at the start of a new run; it just gets appended each time. Future functionality would include an option to either truncate or append to the Log file.
In all cases where a Log is opened, a unit number is assigned to a specific Log. A Log is assigned the lowest available unit number starting with 11. If a unit number is occupied, the next higher unit number is checked using the Fortran "inquire" method. The process repeats until a free unit number is found or when the unit number reaches ESMF_LOG_UPPER in which case an error is returned. As a result, the user should always check for free numbers using Fortran's "inquire" to prevent potential unit number conflicts. In the future we anticipate supporting an option in which a desired unit number can be passed in.
The user can then set or get options on how the Log should be used with the ESMF_LogSet() and ESMF_LogGet() methods. These are partially implemented at this time.
Depending on how the options are set, ESMF_LogWrite() either writes user messages directly to a Log file or writes to a buffer that can be flushed when full or by using the ESMF_LogFlush() method. The default is to flush after every ten entries because maxElements is initialized to ten (which means the buffer reaches its full state after every ten writes and then flushes).
For every ESMF_LogWrite(), a time and date stamp is prepended to the Log entry. The time is given in microsecond precision. The user can call other methods to write to the Log. In every case, all methods eventually make a call implicitly to ESMF_LogWrite() even though the user may never explicitly call it.
When calling ESMF_LogWrite(), the user can supply an optional line, file and method. These arguments can be passed in explicitly or with the help of cpp macros. In the latter case, a define for an ESMF_FILENAME must be placed at the beginning of a file and a define for ESMF_METHOD must be placed at the beginning of each method. The user can then use the ESMF_CONTEXT cpp macro in place of line, file and method to insert the parameters into the method. The user does not have to specify line number as it is a value supplied by cpp.
An example of Log output is given below running with logtype property set to ESMF_LOG_MULTI (default) using the default Log:
(Log file PET0.ESMF_LogFile)
20041105 163418.472210 INFO PET0 Running with ESMF Version 2.2.1
(Log file PET1.ESMF_LogFile)
20041105 163419.186153 ERROR PET1 ESMF_Field.F90 812 ESMF_FieldGet No Grid or Bad Grid attached to Field
The first entry shows date and time stamp. The time is given in microsecond precision. The next item shown is the type of message (INFO in this case). Next, the PET number is added. Lastly, the content is written.
The second entry shows something slightly different. In this case, we have an ERROR. The method name (ESMF_Field.F90) is automatically provided from the cpp macros as well as the line number (812). Then the content of the message is written.
When done writing messages, the default Log is closed by calling ESMF_LogFinalize() or ESMF_LogClose() for user created Logs. Both methods will release the assigned unit number.
! !PROGRAM: ESMF_LogErrEx - Log Error examples ! ! !DESCRIPTION: ! ! This program shows examples of Log Error writing !----------------------------------------------------------------------------- ! Macros for cpp usage ! File define #define ESMF_FILENAME "ESMF_LogErrEx.F90" ! Method define #define ESMF_METHOD "program ESMF_LogErrEx" #include "ESMF_LogMacros.inc" ! ESMF Framework module use ESMF_Mod implicit none ! return variables integer :: rc1, rc2, rc3, rcToTest, allocRcToTest type(ESMF_LOG) :: alog ! a log object that is not the default log type(ESMF_LogType) :: defaultLogtype type(ESMF_Time) :: time integer, pointer :: intptr(:)
This example shows how to use the default Log. This example does not use cpp macros but does use multi Logs. A separate Log will be created for each PET.
! Initialize ESMF to initialize the default Log call ESMF_Initialize(rc=rc1, defaultlogtype=ESMF_LOG_MULTI)
! LogWrite call ESMF_LogWrite("Log Write 2", ESMF_LOG_INFO, rc=rc2)
! LogMsgSetError call ESMF_LogMsgSetError(ESMF_FAILURE, "Convergence failure", & rcToReturn=rc2) ! LogMsgFoundError call ESMF_TimeSet(time, calendarType=ESMF_CAL_NOCALENDAR) call ESMF_TimeSyncToRealTime(time, rcToTest) if (ESMF_LogMsgFoundError(rcToTest, "getting wall clock time", & rcToReturn=rc2)) then ! Error getting time. The previous call will have printed the error ! already into the log file. Add any additional error handling here. ! (This call is expected to provoke an error from the Time Manager.) endif ! LogMsgFoundAllocError allocate(intptr(10), stat=allocRcToTest) if (ESMF_LogMsgFoundAllocError(allocRcToTest, "integer array", & rcToReturn=rc2)) then ! Error during allocation. The previous call will have logged already ! an error message into the log. endif deallocate(intptr)
! Open a Log named "Testlog.txt" associated with alog. call ESMF_LogOpen(alog, "TestLog.txt", rc=rc1)
! LogWrite; ESMF_CONTEXT expands into __LINE__,ESMF_FILENAME,ESMF_METHOD call ESMF_LogWrite("Log Write 2", ESMF_LOG_INFO, ESMF_CONTEXT, & log=alog, rc=rc2)
! LogMsgSetError; ESMF_CONTEXT expands into ! __LINE__,ESMF_FILENAME,ESMF_METHOD call ESMF_LogMsgSetError(ESMF_FAILURE, "Interpolation Failure", & ESMF_CONTEXT, rcToReturn=rc2, log=alog)
! This is an example showing a query of the default Log. Please note that ! no Log is passed in the argument list, so the default Log will be used. call ESMF_LogGet(logtype=defaultLogtype, rc=rc3)
! This is an example setting a property of a Log that is not the default. ! It was opened in a previous example, and the handle for it must be ! passed in the argument list. call ESMF_LogSet(log=alog, halt=ESMF_LOG_HALTERROR, rc=rc2)
! Close the user log. call ESMF_LogClose(alog, rc3)
! Finalize ESMF to close the default log call ESMF_Finalize(rc=rc1)
The properties for a Log are set with the ESMF_LogSet() method and retrieved with the ESMF_LogGet() method.
Additionally, buffering is enabled. Buffering allows ESMF to manage output data streams in a desired way. Writing to the buffer is transparent to the user because all the Log entries are handled automatically by the ESMF_LogWrite() method. All the user has to do is specify the buffer size (the default is ten) by setting the maxElements property. Every time the ESMF_LogWrite() method is called, a LogEntry element is populated with the ESMF_LogWrite() information. When the buffer is full (i.e., when all the LogEntry elements are populated), the buffer will be flushed and all the contents will be written to file. If buffering is not needed, that is maxElements=1 or flushImmediately=ESMF_TRUE, the ESMF_LogWrite() method will immediately write to the Log file(s).
The following is a simplified UML diagram showing the structure of the Log class. See Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their meaning.
INTERFACE:
subroutine ESMF_LogClose(log, rc)ARGUMENTS:
type(ESMF_Log) :: log integer, intent(out),optional :: rcDESCRIPTION:
This routine closes the file(s) associated with the log.
The arguments are:
INTERFACE:
subroutine ESMF_LogFlush(log,rc)ARGUMENTS:
type(ESMF_Log), target,optional :: log integer, intent(out),optional :: rcDESCRIPTION:
This subroutine flushes the ESMF_Log buffer to its associated file.
The arguments are:
INTERFACE:
function ESMF_LogFoundAllocError(statusToCheck, line, file, & method, rcToReturn,log)RETURN VALUE:
logical ::ESMF_LogFoundAllocErrorARGUMENTS:
integer, intent(in) :: statusToCheck integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log),intent(inout),optional :: logDESCRIPTION:
This function returns a logical true when a Fortran status code returned from a memory allocation indicates an allocation error. An ESMF predefined memory allocation error message will be added to the ESMF_Log along with line, file and method. Additionally, the statusToCheck will be converted to a rcToReturn.
The arguments are:
INTERFACE:
function ESMF_LogFoundDeallocError(statusToCheck, line, file, & method, rcToReturn,log)RETURN VALUE:
logical ::ESMF_LogFoundDeallocErrorARGUMENTS:
integer, intent(in) :: statusToCheck integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log),intent(inout),optional :: logDESCRIPTION:
This function returns a logical true when a Fortran status code returned from a memory allocation indicates an allocation error. An ESMF predefined memory allocation error message will be added to the ESMF_Log along with line, file and method. Additionally, the statusToCheck will be converted to a rcToReturn.
The arguments are:
INTERFACE:
function ESMF_LogFoundError(rcToCheck, line, file, method,& rcToReturn, log)RETURN VALUE:
logical ::ESMF_LogFoundErrorARGUMENTS:
integer, intent(in) :: rcToCheck integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out), optional :: rcToReturn type(ESMF_Log),intent(inout), target, optional :: logDESCRIPTION:
This function returns a logical true for ESMF return codes that indicate an error. A predefined error message will added to the ESMF_Log along with line, file and method. Additionally, rcToReturn will be set to rcToCheck.
The arguments are:
error and write message
INTERFACE:
function ESMF_LogMsgFoundAllocError(statusToCheck,msg,line,file, & method,rcToReturn,log)RETURN VALUE:
logical ::ESMF_LogMsgFoundAllocErrorARGUMENTS:
integer, intent(in) :: statusToCheck character(len=*), intent(in) :: msg integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log), intent(inout), optional :: logDESCRIPTION:
This function returns a logical true when a Fortran status code returned from a memory allocation indicates an allocation error. An ESMF predefined memory allocation error message will be added to the ESMF_Log along with a user added msg, line, file and method. Additionally, statusToCheck will be converted to rcToReturn.
The arguments are:
error and write message
INTERFACE:
function ESMF_LogMsgFoundDeallocError(statusToCheck,msg,line,file, & method,rcToReturn,log)RETURN VALUE:
logical ::ESMF_LogMsgFoundDeallocErrorARGUMENTS:
integer, intent(in) :: statusToCheck character(len=*), intent(in) :: msg integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log), intent(inout), optional :: logDESCRIPTION:
This function returns a logical true when a Fortran status code returned from a memory allocation indicates an allocation error. An ESMF predefined memory allocation error message will be added to the ESMF_Log along with a user added msg, line, file and method. Additionally, statusToCheck will be converted to rcToReturn.
The arguments are:
INTERFACE:
function ESMF_LogMsgFoundError(rcToCheck, msg, line, file, method, & rcToReturn, log)RETURN VALUE:
logical ::ESMF_LogMsgFoundErrorARGUMENTS:
integer, intent(in) :: rcToCheck character(len=*), intent(in) :: msg integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log), intent(inout), target, optional :: logDESCRIPTION:
This function returns a logical true for ESMF return codes that indicate an error. A predefined error message will added to the ESMF_Log along with a user added msg, line, file and method. Additionally, rcToReturn is set to rcToCheck.
The arguments are:
INTERFACE:
subroutine ESMF_LogMsgSetError(rcValue, msg, line, file, method, & rcToReturn, log)ARGUMENTS:
integer, intent(in) :: rcValue character(len=*), intent(in) :: msg integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method integer, intent(out),optional :: rcToReturn type(ESMF_Log), intent(inout), target, optional :: logDESCRIPTION:
This subroutine sets the rcToReturn value to rcValue if rcToReturn is present and writes this error code to the ESMF_Log if an error is generated. A predefined error message will added to the ESMF_Log along with a user added msg, line, file and method.
The arguments are:
INTERFACE:
subroutine ESMF_LogOpen(log, filename, logtype, rc)ARGUMENTS:
type(ESMF_Log) :: log character(len=*) :: filename type(ESMF_LogType), intent(in),optional :: logtype integer, intent(out),optional :: rcDESCRIPTION:
This routine opens a file with filename and associates it with the ESMF_Log. This is only used when the user does not want to use the default Log.
The arguments are:
INTERFACE:
subroutine ESMF_LogSet(log,verbose,flush,rootOnly,halt, & stream,maxElements,errorMask,rc)ARGUMENTS:
type(ESMF_Log), target,optional :: log logical, intent(in),optional :: verbose logical, intent(in),optional :: flush logical, intent(in),optional :: rootOnly type(ESMF_HaltType), intent(in),optional :: halt integer, intent(in),optional :: stream integer, intent(in),optional :: maxElements integer, intent(in),optional :: errorMask(:) integer, intent(out),optional :: rcDESCRIPTION:
This subroutine sets the properties for the Log object.
The arguments are:
INTERFACE:
recursive subroutine ESMF_LogWrite(msg,MsgType,line,file,method,log,rc)ARGUMENTS:
character(len=*), intent(in) :: msg type(ESMF_MsgType), intent(in) :: msgtype integer, intent(in), optional :: line character(len=*), intent(in), optional :: file character(len=*), intent(in), optional :: method type(ESMF_Log),target,optional :: log integer, intent(out),optional :: rcDESCRIPTION:
This subroutine writes to the file associated with an ESMF_Log. A message is passed in along with the msgtype, line, file and method. If the write to the ESMF_Log is successful, the function will return a logical true. This function is the base function used by all the other ESMF_Log writing methods.
The arguments are:
The DELayout class provides an additional layer of abstraction on top of the Virtual Machine (VM) layer. DELayout does this by introducing DEs (Decomposition Elements) as logical resource units. The DELayout object keeps track of the relationship between its DEs and the resources of the associated VM object.
The relationship between DEs and VM resources (PETs (Persistent Execution Threads) and VASs (Virtual Address Spaces)) contained in a DELayout object is defined during its creation and cannot be changed thereafter. There are, however, a number of hint and specification arguments that can be used to shape the DELayout during its creation.
Contrary to the number of PETs and VASs contained in a VM object, which are fixed by the available resources, the number of DEs contained in a DELayout can be chosen freely to best match the computational problem or other design criteria. Creating a DELayout with less DEs than there are PETs in the associated VM object can be used to share resources between decomposed objects within an ESMF component. Creating a DELayout with more DEs than there are PETs in the associated VM object can be used to evenly partition the computation over the available resources.
The simplest case, however, is where the DELayout contains the same number of DEs as there are PETs in the associated VM context. In this case the DELayout may be used to re-label the hardware and operating system resources held by the VM. For instance, it is possible to order the resources so that specific DEs have best available communication paths. The DELayout will map the DEs to the PETs of the VM according to the resource details provided by the VM instance.
Furthermore, general DE to PET mapping can be used to offer computational resources with finer granularity than the VM does. The DELayout can be queried for computational and communication capacities of DEs and DE pairs, respectively. This information can be used to best utilize the DE resources when partitioning the computational problem. In combination with other ESMF classes general DE to PET mapping can be used to realize cache blocking, communication hiding and dynamic load balancing.
Finally, the DELayout layer offers primitives that allow a work queue style dynamic load balancing between DEs.
DESCRIPTION:
Specifies which VM resource DEs are pinned to - i.e. PETs or VASs.
Valid values are:
The following examples demonstrate how to create, use and destroy DELayout objects.
Without specifying any of the optional parameters the created ESMF_DELayout defaults into having as many DEs as there are PETs in the associated VM object. Consequently the resulting DELayout describes a simple 1-to-1 DE to PET mapping.
delayout = ESMF_DELayoutCreate(rc=rc)
The default DE to PET mapping is simply:
DE 0 -> PET 0 DE 1 -> PET 1 ...
DELayout objects that are not used any longer should be destroyed.
call ESMF_DELayoutDestroy(delayout, rc=rc)
The optional vm argument can be provided to DELayoutCreate() to lower the method's overhead by the amount it takes to determine the current VM.
delayout = ESMF_DELayoutCreate(vm=vm, rc=rc)
By default all PETs of the associated VM will be considered. However, if the optional argument petList is present DEs will only be mapped against the PETs contained in the list. When the following example is executed on four PETs it creates a DELayout with four DEs by default that are mapped to the provided PETs in their given order. It is erroneous to specify PETs that are not part of the VM context on which the DELayout is defined.
delayout = ESMF_DELayoutCreate(petList=(/(i,i=petCount-1,1,-1)/), rc=rc)
Once the end of the petList has been reached the DE to PET mapping continues from the beginning of the list. For a 4 PET VM the above created DELayout will end up with the following DE to PET mapping:
DE 0 -> PET 3 DE 1 -> PET 2 DE 2 -> PET 1 DE 2 -> PET 3
The deCount argument can be used to specify the number of DEs. In this example a DELayout is created that contains four times as many DEs as there are PETs in the VM.
delayout = ESMF_DELayoutCreate(deCount=4*petCount, rc=rc)
Cyclic DE to PET mapping is the default. For 4 PETs this means:
DE 0, 4, 8, 12 -> PET 0 DE 1, 5, 9, 13 -> PET 1 DE 2, 6, 10, 14 -> PET 2 DE 3, 7, 11, 15 -> PET 3The default DE to PET mapping can be overridden by providing the deGrouping argument. This argument provides a positive integer group number for each DE in the DELayout. All of the DEs of a group will be mapped against the same PET. The actual group index is arbitrary (but must be positive) and its value is of no consequence.
delayout = ESMF_DELayoutCreate(deCount=4*petCount, & deGrouping=(/(i/4,i=0,4*petCount-1)/), rc=rc)
This will achieve blocked DE to PET mapping. For 4 PETs this means:
DE 0, 1, 2, 3 -> PET 0 DE 4, 5, 6, 7 -> PET 1 DE 8, 9, 10, 11 -> PET 2 DE 12, 13, 14, 15 -> PET 3
The quality of the partitioning expressed by the DE to PET mapping depends on the amount and quality of information provided during DELayout creation. In the following example the compWeights argument is used to specify relative computational weights for all DEs and communication weights for DE pairs are provided by the commWeights argument. The example assumes four DEs.
allocate(compWeights(4)) allocate(commWeights(4, 4)) ! setup compWeights and commWeights according to computational problem delayout = ESMF_DELayoutCreate(deCount=4, compWeights=compWeights, & commWeights=commWeights, rc=rc) deallocate(compWeights, commWeights)
The resulting DE to PET mapping depends on the specifics of the VM object and the provided compWeights and commWeights arrays.
Full control over the DE to PET mapping is provided via the petMap argument. This example maps the DEs to PETs in reverse order. In the 4-PET case this will result in the following mapping:
DE 0 -> PET 3 DE 1 -> PET 2 DE 2 -> PET 1 DE 3 -> PET 0
delayout = ESMF_DELayoutCreate(petMap=(/(i,i=petCount-1,0,-1)/), rc=rc)
The petMap argument gives full control over DE to PET mapping. The following example run on 4 or more PETs maps DEs to PETs according to the following table:
DE 0 -> PET 3 DE 1 -> PET 3 DE 2 -> PET 1 DE 3 -> PET 0 DE 4 -> PET 2 DE 5 -> PET 1 DE 6 -> PET 3 DE 7 -> PET 1
delayout = ESMF_DELayoutCreate(petMap=(/3, 3, 1, 0, 2, 1, 3, 1/), rc=rc)
The simplest case is a DELayout with as many DEs as PETs where each DE is against a separate PET. This of course implies that the number of DEs equals the number of PETs. This special 1-to-1 DE to PET mapping is very common and many codes assume this mapping. The following example code shows how a DELayout can be queried about its mapping.
delayout = ESMF_DELayoutCreate(rc=rc)
call ESMF_DELayoutGet(delayout, oneToOneFlag=oneToOneFlag, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc if (.not. oneToOneFlag) then ! handle the unexpected case of general DE to PET mapping endif allocate(localDeList(1)) call ESMF_DELayoutGet(delayout, localDeList=localDeList, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc myDe = localDeList(1) deallocate(localDeList)
In general a DELayout may describe a DE to PET mapping that is not 1-to-1. The following example shows how code can be written in a general form that will work on all PETs for DELayouts with general or 1-to-1 DE to PET mapping.
delayout = ESMF_DELayoutCreate(deCount=petCount+2, rc=rc)
call ESMF_DELayoutGet(delayout, localDeCount=localDeCount, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc allocate(localDeList(localDeCount)) call ESMF_DELayoutGet(delayout, localDeList=localDeList, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc do i=1, localDeCount workDe = localDeList(i) ! print *, "I am PET", localPET, " and I am working on DE ", workDe enddo deallocate(localDeList)
The DELayout API includes two calls that can be used to easily implement work queue dynamic load balancing. The work load is broken up into DEs (more than there are PETs) and processed by the PETs. Load balancing is only possible for ESMF multi-threaded VMs and requires that DEs are pinned to VASs instead of the PETs (default). The following example will run for any VM and DELayout, however, load balancing will only occur under the mentioned conditions.
delayout = ESMF_DELayoutCreate(deCount=petCount+2, dePinFlag=ESMF_DE_PIN_VAS,& rc=rc)
call ESMF_DELayoutGet(delayout, vasLocalDeCount=localDeCount, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc allocate(localDeList(localDeCount)) call ESMF_DELayoutGet(delayout, vasLocalDeList=localDeList, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc do i=1, localDeCount workDe = localDeList(i) print *, "I am PET", localPET, " and I am offering service for DE ", workDe reply = ESMF_DELayoutServiceOffer(delayout, de=workDe, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc if (reply == ESMF_DELAYOUT_SERVICE_ACCEPT) then ! process work associated with workDe print *, "I am PET", localPET, ", service offer for DE ", workDe, & " was accepted." call ESMF_DELayoutServiceComplete(delayout, de=workDe, rc=rc) if (rc /= ESMF_SUCCESS) finalrc=rc endif enddo deallocate(localDeList)
The DELayout class is a light weight object. It stores the DE to PET and VAS mapping for all DEs within all PET instances and a list of local DEs for each PET instance. The DELayout does not store the computational and communication weights optionally provided as arguments to the create method. These hints are only used during create while they are available in user owned arrays.
INTERFACE:
! Private name; call using ESMF_DELayoutCreate() function ESMF_DELayoutCreateDefault(deCount, deGrouping, dePinFlag, petList, & vm, rc)ARGUMENTS:
integer, intent(in), optional :: deCount integer, target, intent(in), optional :: deGrouping(:) type(ESMF_DePinFlag), intent(in), optional :: dePinFlag integer, target, intent(in), optional :: petList(:) type(ESMF_VM), intent(in), optional :: vm integer, intent(out),optional :: rcRETURN VALUE:
type(ESMF_DELayout) :: ESMF_DELayoutCreateDefaultDESCRIPTION:
Create an ESMF_DELayout object on the basis of optionally provided restrictions. By default a DELayout with deCount equal to petCount will be created, each DE mapped to a single PET. However, the number of DEs as well grouping of DEs and PETs can be specified via the optional arguments.
The arguments are:
INTERFACE:
! Private name; call using ESMF_DELayoutCreate() function ESMF_DELayoutCreateFromPetMap(petMap, dePinFlag, vm, rc)ARGUMENTS:
integer, intent(in) :: petMap(:) type(ESMF_DePinFlag), intent(in), optional :: dePinFlag type(ESMF_VM), intent(in), optional :: vm integer, intent(out),optional :: rcRETURN VALUE:
type(ESMF_DELayout) :: ESMF_DELayoutCreateFromPetMapDESCRIPTION:
Create an ESMF_DELayout with exactly specified DE to PET mapping.
This ESMF method must be called in unison by all PETs of the VM. Calling this method from a PET not part of the VM or not calling it from a PET that is part of the VM will result in undefined behavior. ESMF does not guard against violation of the unison requirement. The call is not collective, there is no communication between PETs.
The arguments are:
INTERFACE:
! Private name; call using ESMF_DELayoutCreate() function ESMF_DELayoutCreateHintWeights(deCount, compWeights, commWeights, & deGrouping, dePinFlag, petList, vm, rc)ARGUMENTS:
integer, intent(in), optional :: deCount integer, intent(in) :: compWeights(:) integer, intent(in) :: commWeights(:,:) integer, target, intent(in), optional :: deGrouping(:) type(ESMF_DePinFlag), intent(in), optional :: dePinFlag integer, target, intent(in), optional :: petList(:) type(ESMF_VM), intent(in), optional :: vm integer, intent(out),optional :: rcRETURN VALUE:
type(ESMF_DELayout) :: ESMF_DELayoutCreateHintWeightsDESCRIPTION:
Create an ESMF_DELayout on the basis of computational and communication weights. In addition this call provides control over the number of DEs, DE domains, DE pinning and the PETs to map against.
The arguments are:
INTERFACE:
subroutine ESMF_DELayoutDestroy(delayout, rc)ARGUMENTS:
type(ESMF_DELayout), intent(inout) :: delayout integer, intent(out), optional :: rcDESCRIPTION:
Destroy an ESMF_DELayout object.
The arguments are:
INTERFACE:
subroutine ESMF_DELayoutGet(delayout, vm, deCount, petMap, vasMap, & compCapacity, commCapacity, oneToOneFlag, dePinFlag, & localDeCount, localDeList, vasLocalDeCount, vasLocalDeList, rc)ARGUMENTS:
type(ESMF_DELayout), intent(in) :: delayout type(ESMF_VM), intent(out), optional :: vm integer, intent(out), optional :: deCount integer, target, intent(out), optional :: petMap(:) integer, target, intent(out), optional :: vasMap(:) integer, target, intent(out), optional :: compCapacity(:) integer, target, intent(out), optional :: commCapacity(:,:) logical, intent(out), optional :: oneToOneFlag type(ESMF_DePinFlag), intent(out), optional :: dePinFlag integer, intent(out), optional :: localDeCount integer, target, intent(out), optional :: localDeList(:) integer, intent(out), optional :: vasLocalDeCount integer, target, intent(out), optional :: vasLocalDeList(:) integer, intent(out), optional :: rcDESCRIPTION:
Access to DELayout information.
The arguments are:
INTERFACE:
subroutine ESMF_DELayoutPrint(delayout, options, rc)ARGUMENTS:
type(ESMF_DELayout), intent(in) :: delayout character(len=*), intent(in), optional :: options integer, intent(out), optional :: rcDESCRIPTION:
Prints internal information about the specified ESMF_DELayout
object to stdout.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
recursive subroutine ESMF_DELayoutServiceComplete(delayout, de, rc)ARGUMENTS:
type(ESMF_DELayout), intent(in) :: delayout integer, intent(in) :: de integer, intent(out), optional :: rcDESCRIPTION:
The PET who's service offer was accepted for de must use ESMF_DELayoutServiceComplete to close the service window.
The arguments are:
INTERFACE:
recursive function ESMF_DELayoutServiceOffer(delayout, de, rc)ARGUMENTS:
type(ESMF_DELayout), intent(in) :: delayout integer, intent(in) :: de integer, intent(out), optional :: rcRETURN VALUE:
type(ESMF_DELayoutServiceReply) :: ESMF_DELayoutServiceOfferDESCRIPTION:
Offer service for a DE in the ESMF_DELayout object. This call together with ESMF_DELayoutServiceComplete() provides the synchronization primitives between the PETs of an ESMF multi-threaded VM necessary for dynamic load balancing via a work queue approach. The calling PET will either receive ESMF_DELAYOUT_SERVICE_ACCEPT if the service offer has been accepted by DELayout or ESMF_DELAYOUT_SERVICE_DENY if the service offer was denied. The service offer paradigm is different from a simple mutex approach in that DELayout keeps track of the number of service offers issued for each DE by each PET and accepts only one PET's offer for each offer increment. This requires that all PETs use ESMF_DELayoutServiceOffer() in unison.
The arguments are:
INTERFACE:
subroutine ESMF_DELayoutValidate(delayout, rc)ARGUMENTS:
type(ESMF_DELayout), intent(in) :: delayout integer, intent(out), optional :: rcDESCRIPTION:
Validates that the delayout is internally consistent. The method returns an error code if problems are found.
The arguments are:
The ESMF_VM (Virtual Machine) class is a generic representation of hardware and system software resources. There is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The VM class handles all resource management tasks for the Component class and provides a description of the underlying configuration of the compute resources used by a Component.
In addition to resource description and management, the VM class offers the lowest level of ESMF communication methods. The VM communication calls are very similar to MPI. Data references in VM communication calls must be provided as raw, language specific, one-dimensional, contiguous data arrays. The similarity between VM and MPI communication calls is striking and there are many equivalent point-to-point and collective communication calls. However, unlike MPI, the VM communication calls support communication between threaded PETs in a completely transparent fashion.
Many ESMF applications do not interact with the VM class directly very much. The resource management aspect is wrapped completely transparent into the ESMF Component concept. Often the only reason that user code queries a Component object for the associated VM object is to inquire about resource information, such as the localPet or the petCount. Further, for most applications the use of higher level communication APIs, such as provided by Array and Field, are much more convenient than using the low level VM communication calls.
The basic elements of a VM are called PETs, which stands for Persistent Execution Threads. These are equivalent to OS threads with a lifetime of at least that of the associated component. All VM functionality is expressed in terms of PETs. In the simplest, and most common case, a PET is equivalent to an MPI process. However, ESMF also supports multi-threading, where multiple PETs run as Pthreads inside the same virtual address space (VAS).
The resource management functions of the VM class become visible when a component, or the driver code, creates sub-components. Section 12.4.5 discusses this aspect from the Superstructure perspective and provides links to the relevant Component examples in the documentation.
There are two parts to resource management, the parent and the child. When the parent component creates a child component, the parent VM object provides the resources on which the child is created with ESMF_GridCompCreate() or ESMF_CplCompCreate(). The optional petList argument to these calls limits the resources that the parent gives to a specific child. The child component, on the other hand, may specify - during its optional ESMF_<Grid/Cpl>CompSetVM() method - how it wants to arrange the inherited resources in its own VM. After this, all standard ESMF methods of the Component, including ESMF_<Grid/Cpl>CompSetServices(), will execute in the child VM. Notice that the ESMF_<Grid/Cpl>CompSetVM() routine, although part of the child Component, must execute before the child VM has been started up. It runs in the parent VM context. The child VM is created and started up just before the user-written set services routine, specified as an argument to ESMF_<Grid/Cpl>CompSetServices(), is entered.
The concept of the ESMF Virtual Machine (VM) is so fundamental to the framework that every ESMF application uses it. However, for many user applications the VM class is transparently hidden behind the ESMF Component concept and higher data classes (e.g. Array, Field). The interaction between user code and VM is often only indirect. The following examples provide an overview of where the VM class can come into play in user code.
This complete example program demonstrates the simplest ESMF application, consisting of only a main program without any Components. The global VM, which is automatically created during the ESMF_Initialize() call, is obtained using two different methods. First the global VM will be returned by ESMF_Initialize() if the optional vm argument is specified. The example uses the VM object obtained this way to call the VM print method. Second, the global VM can be obtained anywhere in the user application using the ESMF_VMGetGlobal() call. The identical VM is returned and several VM query methods are called to inquire about the associated resources.
program ESMF_VMDefaultBasicsEx use ESMF_Mod implicit none ! local variables integer:: rc type(ESMF_VM):: vm integer:: localPet, petCount, peCount, ssiId, vas
call ESMF_Initialize(vm=vm, rc=rc) ! Providing the optional vm argument to ESMF_Initialize() is one way of ! obtaining the global VM.
call ESMF_VMPrint(vm, rc=rc)
call ESMF_VMGetGlobal(vm=vm, rc=rc) ! Calling ESMF_VMGetGlobal() anywhere in the user application is the other ! way to obtain the global VM object.
call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, peCount=peCount, & rc=rc) ! The VM object contains information about the associated resources. If the ! user code requires this information it must query the VM object.
print *, "This PET is localPet: ", localPet print *, "of a total of ",petCount," PETs in this VM." print *, "There are ", peCount," PEs referenced by this VM" call ESMF_VMGetPETLocalInfo(vm, localPet, peCount=peCount, ssiId=ssiId, & vas=vas, rc=rc)
print *, "This PET is executing in virtual address space (VAS) ", vas print *, "located on single system image (SSI) ", ssiId print *, "and is associated with ", peCount, " PEs." call ESMF_Finalize(rc=rc)
end program
Sometimes user code requires access to the MPI communicator, e.g. to support legacy code that contains explict MPI communication calls. The correct way of wrapping such code into ESMF is to obtain the MPI intra-communicator out of the VM object. In order not to interfere with ESMF communications it is advisable to duplicate the communicator before using it in user-level MPI calls. In this example the duplicated communicator is used for a user controlled MPI_Barrier().
integer:: mpic
integer:: mpic2
call ESMF_VMGet(vm, mpiCommunicator=mpic, rc=rc) ! The returned MPI communicator spans the same MPI processes that the VM ! is defined on.
call MPI_Comm_dup(mpic, mpic2, ierr) ! Duplicate the MPI communicator not to interfere with ESMF communications. ! The duplicate MPI communicator can be used in any MPI call in the user ! code. Here the MPI_Barrier() routine is called. call MPI_Barrier(mpic2, ierr)
It is possible to nest an ESMF application inside a user application that explicitly calls MPI_Init() and MPI_Finalize(). The ESMF_Initialize() call automatically checks whether MPI has already been initialized, and if so does not call MPI_Init() internally. On the finalize side, ESMF_Finalize() can be instructed to not call MPI_Finalize(), making it the responsibility of the outer code to finalize MPI.
call MPI_Init(ierr) ! User code initializes MPI.
call ESMF_Initialize(rc=rc) ! ESMF_Initialize() does not call MPI_Init() if it finds MPI initialized.
call ESMF_Finalize(terminationflag=ESMF_KEEPMPI, rc=rc) ! Calling with terminationflag=ESMF_KEEPMPI instructs ESMF_Finalize() to keep ! MPI active.
call MPI_Finalize(ierr) ! It is the responsibility of the outer user code to finalize MPI.
The previous example demonstrated that it is possible to nest an ESMF application, i.e. ESMF_Initialize()...ESMF_Finalize() inside MPI_Init()...MPI_Finalize(). It is not necessary that all MPI ranks enter the ESMF application. The following example shows how the user code can pass an MPI communicator to ESMF_Initialize(), and enter the ESMF application on a subset of MPI ranks.
call MPI_Init(ierr) ! User code initializes MPI.
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr) ! User code determines the local rank.
! User code prepares MPI communicator "esmfComm" that only contains ! rank 0 and 1.
if (rank < 2) then call ESMF_Initialize(mpiCommunicator=esmfComm, rc=rc) ! Only call ESMF_Initialize() on rank 0 and 1, passing the prepared MPI ! communicator that spans these ranks.
call ESMF_Finalize(terminationflag=ESMF_KEEPMPI, rc=rc) ! Finalize ESMF without finalizing MPI. The user application will call ! MPI_Finalize() on all ranks.
endif
call MPI_Finalize(ierr) ! User code finalizes MPI.
The VM layer provides MPI-like point-to-point communication. Use ESMF_VMSend() and ESMF_VMRecv() to pass data between two PETs. The following code sends data from PET 'src' and receives it on PET 'dst'. Both PETs must be part of the same VM. The sendData and recvData arguments must be 1-dimensional arrays.
if (localPet==src) & call ESMF_VMSend(vm, sendData=localData, count=count, dst=dst, rc=rc)
if (localPet==dst) & call ESMF_VMRecv(vm, recvData=localData, count=count, src=src, rc=rc)
The VM layer provides MPI-like collective communication. ESMF_VMScatter() scatters data located on root PET across all the PETs of the VM. ESMF_VMGather() provides the opposite operation, gathering data from all the PETs of the VM onto root PET.
call ESMF_VMScatter(vm, sendData=array1, recvData=array2, count=nsize, & root=scatterRoot, rc=rc) ! Both sendData and recvData must be 1-d arrays.
call ESMF_VMGather(vm, sendData=array2, recvData=array1, count=nsize, & root=gatherRoot, rc=rc) ! Both sendData and recvData must be 1-d arrays.
Use ESMF_VMAllReduce() to reduce data distributed across the PETs of a VM into a result vector, returned on all the PETs. Further, use ESMF_VMAllFullReduce() to reduce the data into a single scalar returned on all PETs.
call ESMF_VMAllReduce(vm, sendData=array1, recvData=array2, count=nsize, & reduceflag=ESMF_SUM, rc=rc) ! Both sendData and recvData must be 1-d arrays. Reduce distributed sendData ! element by element into recvData and return in on all PETs.
call ESMF_VMAllFullReduce(vm, sendData=array1, recvData=result, count=nsize, & reduceflag=ESMF_SUM, rc=rc) ! sendData must be 1-d array. Fully reduce the distributed sendData into a ! single scalar and return it in recvData on all PETs.
The following example shows the role that the VM plays in connection with ESMF Components. A single Component is created in the main program. Through the optional petList argument the driver code specifies that only resources associated with PET 0 are given to the gcomp object.
When the Component code is invoked through the standard ESMF Component methods Initialize, Run, or Finalize the Component's VM is automatically entered. Inside of the user-written Component code the Component VM can be obtained by querying the Component object. The VM object will indicate that only a single PET is executing the Component code.
module ESMF_VMComponentEx_gcomp_mod
recursive subroutine mygcomp_init(gcomp, istate, estate, clock, rc) type(ESMF_GridComp) :: gcomp type(ESMF_State) :: istate, estate type(ESMF_Clock) :: clock integer, intent(out) :: rc ! local variables type(ESMF_VM):: vm ! get this Component's vm call ESMF_GridCompGet(gcomp, vm=vm) ! the VM object contains information about the execution environment of ! the Component call ESMF_VMPrint(vm, rc) rc = 0 end subroutine !-------------------------------------------------------------- recursive subroutine mygcomp_run(gcomp, istate, estate, clock, rc) type(ESMF_GridComp) :: gcomp type(ESMF_State) :: istate, estate type(ESMF_Clock) :: clock integer, intent(out) :: rc ! local variables type(ESMF_VM):: vm ! get this Component's vm call ESMF_GridCompGet(gcomp, vm=vm) ! the VM object contains information about the execution environment of ! the Component call ESMF_VMPrint(vm, rc) rc = 0 end subroutine !-------------------------------------------------------------- recursive subroutine mygcomp_final(gcomp, istate, estate, clock, rc) type(ESMF_GridComp) :: gcomp type(ESMF_State) :: istate, estate type(ESMF_Clock) :: clock integer, intent(out) :: rc ! local variables type(ESMF_VM):: vm ! get this Component's vm call ESMF_GridCompGet(gcomp, vm=vm) ! the VM object contains information about the execution environment of ! the Component call ESMF_VMPrint(vm, rc) rc = 0 end subroutine !-------------------------------------------------------------- end module
program ESMF_VMComponentEx use ESMF_Mod use ESMF_VMComponentEx_gcomp_mod implicit none ! local variables
gcomp = ESMF_GridCompCreate(petList=(/0/), rc=rc)
call ESMF_GridCompSetServices(gcomp, mygcomp_register, rc)
call ESMF_GridCompInitialize(gcomp, rc=rc)
call ESMF_GridCompRun(gcomp, rc=rc)
call ESMF_GridCompFinalize(gcomp, rc=rc)
call ESMF_GridCompDestroy(gcomp, rc=rc)
call ESMF_Finalize(rc=rc)
end program
The VM class provides an additional layer of abstraction on top of the POSIX machine model, making it suitable for HPC applications. There are four key aspects the VM class deals with.
Definition of terms used in the diagram
The POSIX machine abstraction, while a very powerful concept, needs augmentation when applied to HPC applications. Key elements of the POSIX abstraction are processes, which provide virtually unlimited resources (memory, I/O, sockets, ...) to possibly multiple threads of execution. Similarly POSIX threads create the illusion that there is virtually unlimited processing power available to each POSIX process. While the POSIX abstraction is very suitable for many multi-user/multi-tasking applications that need to share limited physical resources, it does not directly fit the HPC workload where over-subscription of resources is one of the most expensive modes of operation.
ESMF's virtual machine abstraction is based on the POSIX machine model but holds additional information about the available physical processing units in terms of Processing Elements (PEs). A PE is the smallest physical processing unit and encapsulates the hardware details (Cores, CPUs and SSIs).
There is exactly one physical machine layout for each application, and all VM instances have access to this information. The PE is the smallest processing unit which, in today's microprocessor technology, corresponds to a single Core. Cores are arranged in CPUs which in turn are arranged in SSIs. The setup of the physical machine layout is part of the ESMF initialization process.
On top of the PE concept the key abstraction provided by the VM is the PET. All user code is executed by PETs while OS and hardware details are hidden. The VM class contains a number of methods which allow the user to prescribe how the PETs of a desired virtual machine should be instantiated on the OS level and how they should map onto the hardware. This prescription is kept in a private virtual machine plan object which is created at the same time the associated component is being created. Each time component code is entered through one of the component's registered top-level methods (Initialize/Run/Finalize), the virtual machine plan along with a pointer to the respective user function is used to instantiate the user code on the PETs of the associated VM in form of single- or multi-threaded POSIX processes.
The process of starting, entering, exiting and shutting down a VM is very transparent, all spawning and joining of threads is handled by VM methods "behind the scenes". Furthermore, fundamental synchronization and communication primitives are provided on the PET level through a uniform API, hiding details related to the actual instantiation of the participating PETs.
Within a VM object each PE of the physical machine maps to 0 or 1 PETs. Allowing unassigned PEs provides a means to prevent over-subscription between multiple concurrently running virtual machines. Similarly a maximum of one PET per PE prevents over-subscription within a single VM instance. However, over-subscription is possible by subscribing PETs from different virtual machines to the same PE. This type of over-subscription can be desirable for PETs associated with IO work loads expected to be used infrequently and to block often on IO requests.
On the OS level each PET of a VM object is represented by a POSIX thread (Pthread) either belonging to a single- or multi-threaded process and maps to at least 1 PE of the physical machine, ensuring its execution. Mapping a single PET to multiple PEs provides resources for user-level multi-threading, in which case the user code inquires how many PEs are associated with its PET and if there are multiple PEs available the user code can spawn an equal number of threads (e.g. OpenMP) without risking over-subscription. Typically these user spawned threads are short-lived and used for fine-grained parallelization in form of TETs. All PEs mapped against a single PET must be part of a unique SSI in order to allow user-level multi-threading!
In addition to discovering the physical machine the ESMF initialization process sets up the default global virtual machine. This VM object, which is the ultimate parent of all VMs created during the course of execution, contains as many PETs as there are PEs in the physical machine. All of its PETs are instantiated in form of single-threaded MPI processes and a 1:1 mapping of PETs to PEs is used for the default global VM.
The VM design and implementation is based on the POSIX process and thread model as well as the MPI-1.2 standard. As a consequence of the latter standard the number of processes is static during the course of execution and is determined at start-up. The VM implementation further requires that the user starts up the ESMF application with as many MPI processes as there are PEs in the available physical machine using the platform dependent mechanism to ensure proper process placement.
All MPI processes participating in a VM are grouped together by means of an MPI_Group object and their context is defined via an MPI_Comm object (MPI intra-communicator). The PET local process id within each virtual machine is equal to the MPI_Comm_rank in the local MPI_Comm context whereas the PET process id is equal to the MPI_Comm_rank in MPI_COMM_WORLD. The PET process id is used within the VM methods to determine the virtual memory space a PET is operating in.
In order to provide a migration path for legacy MPI-applications the VM offers accessor functions to its MPI_Comm object. Once obtained this object may be used in explicit user-code MPI calls within the same context.
INTERFACE:
! Private name; call using ESMF_VMAllFullReduce() subroutine ESMF_VMAllFullReduce<type><kind>(vm, sendData, recvData, count, & reduceflag, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), intent(out) :: recvData integer, intent(in) :: count type(ESMF_ReduceFlag), intent(in) :: reduceflag type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that reduces a contiguous data
array of <type><kind> across the ESMF_VM object
into a single value of the same <type><kind>. The result is
returned on all PETs. Different reduction operations can be specified.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMAllGather() subroutine ESMF_VMAllGather<type><kind>(vm, sendData, recvData, count, & blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: count type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that gathers contiguous data
from all PETs of an ESMF_VM object into an array on all PETs.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMAllGatherV() subroutine ESMF_VMAllGatherV<type><kind>(vm, sendData, sendCount, recvData, & recvCounts, recvOffsets, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: sendCount <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: recvCounts(:) integer, intent(in) :: recvOffsets(:) type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that gathers contiguous data
from all PETs of an ESMF_VM object into an array on all PETs.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMAllReduce() subroutine ESMF_VMAllReduce<type><kind>(vm, sendData, recvData, count, & reduceflag, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: count type(ESMF_ReduceFlag), intent(in) :: reduceflag type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that reduces a contiguous data
array across the ESMF_VM object into a contiguous data array of the
same <type><kind>. The result array is returned on all PETs.
Different reduction operations can be specified.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMAllToAllV() subroutine ESMF_VMAllToAllV<type><kind>(vm, sendData, sendCounts, sendOffsets, & recvData, recvCounts, recvOffsets, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: sendCounts(:) integer, intent(in) :: sendOffsets(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: recvCounts(:) integer, intent(in) :: recvOffsets(:) type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that performs a total exchange
operation, sending pieces of the contiguous data buffer semdData to
all other PETs while receiving data into the contiguous data buffer
recvData from all other PETs.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
subroutine ESMF_VMBarrier(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that blocks calling PET until
all PETs of the VM context have issued the call.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMBroadcast() subroutine ESMF_VMBroadcast<type><kind>(vm, bcstData, count, root, & blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(inout) :: bcstData(:) integer, intent(in) :: count integer, intent(in) :: root type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that broadcasts a contiguous
data array from PET root to all other PETs of the ESMF_VM
object.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMGather() subroutine ESMF_VMGather<type><kind>(vm, sendData, recvData, count, root, & blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: count integer, intent(in) :: root type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that gathers contiguous data
from all PETs of an ESMF_VM object (including root) into an
array on the root PET.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMGatherV() subroutine ESMF_VMGatherV<type><kind>(vm, sendData, sendCount, recvData, & recvCounts, recvOffsets, root, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: sendCount <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: recvCounts(:) integer, intent(in) :: recvOffsets(:) integer, intent(in) :: root integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that gathers contiguous data
from all PETs of an ESMF_VM object into an array on root PET.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
subroutine ESMF_VMGet(vm, localPet, petCount, peCount, mpiCommunicator, & pthreadsEnabledFlag, openMPEnabledFlag, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(out), optional :: localPet integer, intent(out), optional :: petCount integer, intent(out), optional :: peCount integer, intent(out), optional :: mpiCommunicator logical, intent(out), optional :: pthreadsEnabledFlag logical, intent(out), optional :: openMPEnabledFlag integer, intent(out), optional :: rcDESCRIPTION:
Get internal information about the specified ESMF_VM object.
The arguments are:
INTERFACE:
subroutine ESMF_VMGetGlobal(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(out) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Get the global ESMF_VM object. This is the VM object that is created during ESMF_Initialize() and is the ultimate parent of all VM objects in an ESMF application. It is identical to the VM object returned by ESMF_Initialize(..., vm=vm, ...).
The ESMF_VMGetGlobal() call provides access to information about the global execution context via the global VM. This call is necessary because ESMF does not created a global ESMF Component during ESMF_Initialize(), that could be queried for information about the global execution context of an ESMF application.
Usage of ESMF_VMGetGlobal() from within Component code is
strongly discouraged. ESMF Components should only access their own VM
objects through Component methods. Global information, if required by
the Component user code, should be passed down to the Component from the
driver through the Component calling interface.
The arguments are:
INTERFACE:
subroutine ESMF_VMGetCurrent(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(out) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Get the ESMF_VM object of the current execution context. Calling ESMF_VMGetCurrent() within an ESMF Component, will return the same VM object as ESMF_GridCompGet(..., vm=vm, ...) or ESMF_CplCompGet(..., vm=vm, ...).
The main purpose of providing ESMF_VMGetCurrent() is to simplify ESMF adoption in legacy code. Specifically, code that uses MPI_COMM_WORLD deep within its calling tree can easily be modified to use the correct MPI communicator of the current ESMF execution context. The advantage is that these modifications are very local, and do not require wide reaching interface changes in the legacy code to pass down the ESMF component object, or the MPI communicator.
The use of ESMF_VMGetCurrent() is strongly discouraged in newly written Component code. Instead, the ESMF Component object should be used as the appropriate container of ESMF context information. This object should be passed between the subroutines of a Component, and be queried for any Component specific information.
Outside of a Component context, i.e. within the driver context, the call
to ESMF_VMGetCurrent() is identical to ESMF_VMGetGlobal().
The arguments are:
INTERFACE:
subroutine ESMF_VMGetPETLocalInfo(vm, pet, peCount, ssiId, threadCount, & threadId, vas, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(in) :: pet integer, intent(out), optional :: peCount integer, intent(out), optional :: ssiId integer, intent(out), optional :: threadCount integer, intent(out), optional :: threadId integer, intent(out), optional :: vas integer, intent(out), optional :: rcDESCRIPTION:
Get internal information about a specific PET within an ESMF_VM
object.
The arguments are:
INTERFACE:
subroutine ESMF_VMPrint(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Print internal information about the specified ESMF_VM to
stdout.
Note: Many ESMF_<class>Print methods are implemented in C++.
On some platforms/compilers there is a potential issue with interleaving
Fortran and C++ output to stdout such that it doesn't appear in
the expected order. If this occurs, the ESMF_IOUnitFlush() method
may be used on unit 6 to get coherent output.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMRecv() subroutine ESMF_VMRecv<type><kind>(vm, recvData, count, src, blockingflag, & commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer(ESMF_KIND_I4), target, intent(out) :: recvData(:) integer, intent(in) :: count integer, intent(in) :: src type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Receive contiguous data from src PET within the same ESMF_VM
object.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMReduce() subroutine ESMF_VMReduce<type><kind>(vm, sendData, recvData, count, & reduceflag, root, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: count type(ESMF_ReduceFlag), intent(in) :: reduceflag integer, intent(in) :: root type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that reduces a contiguous data
array across the ESMF_VM object into a contiguous data array of
the same <type><kind>. The result array is returned on root PET.
Different reduction operations can be specified.
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
TODO: The current version of this method does not provide an
implementation of the non-blocking feature. When calling this
method with blockingflag = ESMF_NONBLOCKING error code
ESMF_RC_NOT_IMPL will be returned and an error will be
logged.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMScatter() subroutine ESMF_VMScatter<type><kind>(vm, sendData, recvData, count, root, & blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: count integer, intent(in) :: root type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that scatters contiguous data
from the root PET to all PETs across the ESMF_VM object
(including root).
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMScatterV() subroutine ESMF_VMScatterV<type><kind>(vm, sendData, sendCounts, sendOffsets, & recvData, recvCount, root, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: sendCounts(:) integer, intent(in) :: sendOffsets(:) <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: recvCount integer, intent(in) :: root integer, intent(out), optional :: rcDESCRIPTION:
Collective ESMF_VM communication call that scatters contiguous data
from the root PET to all PETs across the ESMF_VM object
(including root).
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMSend() subroutine ESMF_VMSend<type><kind>(vm, sendData, count, dst, blockingflag, & commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: count integer, intent(in) :: dst type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Send contiguous data to dst PET within the same ESMF_VM object.
The arguments are:
INTERFACE:
! Private name; call using ESMF_VMSendRecv() subroutine ESMF_VMSendRecv<type><kind>(vm, sendData, sendCount, dst, & recvData, recvCount, src, blockingflag, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm <type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:) integer, intent(in) :: sendCount integer, intent(in) :: dst <type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:) integer, intent(in) :: recvCount integer, intent(in) :: src type(ESMF_BlockingFlag), intent(in), optional :: blockingflag type(ESMF_CommHandle), intent(out), optional :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Send contiguous data to dst PET within the same ESMF_VM object
while receiving contiguous data from src PET within the same
ESMF_VM object. The sendData and recvData arrays must be
disjoint!
This method is overloaded for: ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,
ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.
The arguments are:
INTERFACE:
subroutine ESMF_VMValidate(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Validates that the vm is internally consistent. The method returns an error code if problems are found.
The arguments are:
INTERFACE:
subroutine ESMF_VMCommWait(vm, commhandle, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm type(ESMF_CommHandle), intent(in) :: commhandle integer, intent(out), optional :: rcDESCRIPTION:
Wait for non-blocking VM communication specified by the commhandle to
complete.
The arguments are:
INTERFACE:
subroutine ESMF_VMCommQueueWait(vm, rc)ARGUMENTS:
type(ESMF_VM), intent(in) :: vm integer, intent(out), optional :: rcDESCRIPTION:
Wait for all pending non-blocking VM communication within the
specified VM context to complete.
The arguments are:
INTERFACE:
subroutine ESMF_VMWtime(time, rc)ARGUMENTS:
real(ESMF_KIND_R8), intent(out) :: time integer, intent(out), optional :: rcDESCRIPTION:
Get floating-point number of seconds of elapsed wall-clock time since some
time in the past.
The arguments are:
INTERFACE:
subroutine ESMF_VMWtimeDelay(delay, rc)ARGUMENTS:
real(ESMF_KIND_R8), intent(in) :: delay integer, intent(out), optional :: rcDESCRIPTION:
Delay execution for amount of seconds.
The arguments are:
INTERFACE:
subroutine ESMF_VMWtimePrec(prec, rc)ARGUMENTS:
real(ESMF_KIND_R8), intent(out) :: prec integer, intent(out), optional :: rcDESCRIPTION:
Get a run-time estimate of the timer precision as floating-point number
of seconds. This is a relatively expensive call since the timer precision
is measured several times before the maximum is returned as the estimate.
The returned value is PET-specific and may differ across the VM
context.
The arguments are:
The ESMF Fortran I/O utilities provide portable methods to access capabilities which are often implemented in different ways amongst different environments. Currently, two utility methods are implemented: ESMF_IOUnitGet(), to find an unopened unit number within the range of unit numbers that ESMF is allowed to use, and ESMF_IOUnitFlush() to flush the I/O buffer associated with a specific Fortran unit.
call ESMF_IOUnitGet (unit=grid_unit, rc=rc) open (unit=grid_unit, file='grid_data.dat', status='old', action='read')
By default, unit numbers between 50 and 99 are scanned to find an unopened unit number.
Internally, ESMF also uses ESMF_IOUnitGet() when it needs to open Fortran unit numbers for file I/O. By using the same API for both user and ESMF code, unit number collisions can be avoided.
When integrating ESMF into an application where there are conflicts with other uses of the same unit number range, such as when hard-coded unit number values are used, an alternative unit number range can be specified. The ESMF_Initialize() optional arguments IOUnitLower and IOUnitUpper may be set as needed. Note that IOUnitUpper must be set to a value higher than IOUnitLower, and that both must be non-negative. Otherwise ESMF_Initialize will return a return code of ESMF_FAILURE. ESMF itself does not typically need more than about five units for internal use.
call ESMF_Initialize (..., IOUnitLower=120, IOUnitUpper=140)
All current Fortran environments have preconnected unit numbers, such as units 5 and 6 for standard input and output, in the single digit range. So it is recommended that the unit number range is chosen to begin at unit 10 or higher to avoid these preconnected units.
Fortran run-time libraries generally use buffering techniques to improve I/O performance. However output buffering can be problematic when output is needed, but is ``trapped'' in the buffer because it is not full. This is a common occurance when debugging a program, and inserting WRITE statements to track down the bad area of code. If the program crashes before the output buffer has been flushed, the desired debugging output may never be seen -- giving a misleading indication of where the problem occurred. It would be desirable to ensure that the output buffer is flushed at predictable points in the program in order to get the needed results. Likewise, in parallel code, predictable flushing of output buffers is a common requirement, often in conjunction with ESMF_VMBarrier() calls.
The ESMF_IOUnitFlush() API is provided to flush a unit as desired. Here is an example of code which prints debug values, and serializes the output to a terminal in PET order:
type(ESMF_VM) :: vm integer :: tty_unit integer :: me, npets call ESMF_Initialize (vm=vm, rc=rc) call ESMF_VMGet (vm, localPet=me, petCount=npes) call ESMF_IOUnitGet (unit=tty_unit) open (unit=tty_unit, file='/dev/tty', status='old', action='write') ... call ESMF_VMBarrier (vm=vm) do, i=0, npets-1 if (i == me) then write (tty_unit, *) 'PET: ', i, ', values are: ', a, b, c call ESMF_IOUnitFlush (unit=tty_unit) end if call ESMF_VMBarrier (vm=vm) end do
When ESMF needs to open a Fortran I/O unit, it calls ESMF_IOUnitGet() to find an unopened unit number. As delivered, the range of unit numbers that are searched are between ESMF_LOG_FORTRAN_UNIT_NUMBER (normally set to 50), and ESMF_LOG_UPPER (normally set to 99.) Unopened unit numbers are found by using the Fortran INQUIRE statement.
When integrating ESMF into an application where there are conflicts with other uses of the same unit number range, an alternative range can be specified in the ESMF_Initialize() call by setting the IOUnitLower and IOUnitUpper arguments as needed. ESMF_IOUnitGet() will then search the alternate range of unit numbers. Note that IOUnitUpper must be set to a value higher than IOUnitLower, and that both must be non-negative. Otherwise ESMF_Initialize will return a return code of ESMF_FAILURE.
Fortran unit numbers are not standardized in the Fortran 90 Standard. The standard only requires that they be non-negative integers. But other than that, it is up to the compiler writers and application developers to provide and use units which work with the particular implementation. For example, units 5 and 6 are a defacto standard for ``standard input'' and ``standard output'' -- even though this is not specified in the actual Fortran standard. The Fortran standard also does not specifiy which unit numbers can be used, nor does it specify how many can be open simultaneously.
Since all current compilers have preconnected unit numbers, and these are typically found on units lower than 10, it is recommended that applications use unit numbers 10 and higher.
When ESMF needs to flush a Fortran unit, the ESMF_IOUnitFlush() API is used to centralize the file flushing capability, because Fortran has not historically had a standard mechanism for flushing output buffers. Most compilers run-time libraries support various library extensions to provide this functionality -- though, being non-standard, the spelling and number of arguments vary between implementations. Fortran 2003 also provides for a FLUSH statement which is built into the language. When possible, ESMF_IOUnitFlush() uses the F2003 FLUSH statement. With older compilers, the appropriate library call is made.
INTERFACE:
subroutine ESMF_IOUnitFlush (unit, rc)PARAMETERS:
integer, intent(in) :: unit integer, intent(out), optional :: rcDESCRIPTION:
Call the system-dependent routine to force output on a specific Fortran unit number.
The arguments are:
INTERFACE:
subroutine ESMF_IOUnitGet (unit, rc)ARGUMENTS:
integer, intent(out) :: unit integer, intent(out), optional :: rcDESCRIPTION:
Scan for, and return, a free Fortran I/O unit number.
The arguments are:
By default, the range of unit numbers returned is between 50 and 99 (parameters ESMF_LOG_FORTRAN_UNIT_NUMBER and ESMF_LOG_UPPER respectively.) When integrating ESMF into an application where these values conflict with other usages, the range of values may be moved by setting the optional IOUnitLower and IOUnitUpper arguments in the initial ESMF_Initialize() call with values in a safe, alternate, range.
The Fortran unit number which is returned is not reserved in any way. Successive calls without intervening OPEN or CLOSE statements (or other means of connecting to units), might not return a unique unit number. It is recommended that an OPEN statement immediately follow the call to ESMF_IOUnitGet() to activate the unit.