
National Unified Operational Prediction Capability

NUOPC Layer Reference

ESMF 8.8.0

Content Standards Committee (CSC) Members

January 10, 2025

NUOPC

CMA/CSC Committee

http://www.weather.gov/nuopc

Contents

1 Description 5

2 Design and Implementation Notes 5

2.1 Generic Components . 5

2.1.1 Component Specialization . 6

2.1.2 Partial Specialization . 8

2.2 Field Dictionary . 9

2.2.1 Field Dictionary file . 9

2.2.2 Preloaded Field Dictionary . 10

2.3 Metadata . 10

2.3.1 Driver Component Metadata . 11

2.3.2 Model Component Metadata . 12

2.3.3 Mediator Component Metadata . 15

2.3.4 Connector Component Metadata . 17

2.3.5 State Metadata . 20

2.3.6 Field Metadata . 20

2.4 Initialization . 23

2.4.1 Phase Maps, Semantic Specialization Labels, and Component Labels 23

2.4.2 Field Pairing . 23

2.4.3 Namespaces . 24

2.4.4 Using Coupling Sets for Coupling Multiple Nests . 25

2.4.5 Connection Options . 26

2.4.6 Data-Dependencies during Initialize . 28

2.4.7 Transfer of Grid/Mesh/LocStream Objects between Components 29

2.4.8 Field and Grid/Mesh/LocStream Reference Sharing . 30

2.4.9 Field Mirroring . 31

2.5 Timekeeping . 32

2.6 Component Hierarchies . 33

2.7 Resource Control and Threaded Components . 34

2.8 External NUOPC Interface . 39

3 API 42

3.1 Generic Component: NUOPC_Driver . 42

3.1.1 NUOPC_DriverAddComp . 43

3.1.2 NUOPC_DriverAddComp . 45

3.1.3 NUOPC_DriverAddComp . 46

3.1.4 NUOPC_DriverAddRunElement . 47

3.1.5 NUOPC_DriverAddRunElement . 48

3.1.6 NUOPC_DriverAddRunElement . 49

3.1.7 NUOPC_DriverEgestRunSequence . 49

3.1.8 NUOPC_DriverGet . 49

3.1.9 NUOPC_DriverGetComp . 50

3.1.10 NUOPC_DriverGetComp . 50

3.1.11 NUOPC_DriverGetComp . 51

3.1.12 NUOPC_DriverGetComp . 52

3.1.13 NUOPC_DriverIngestRunSequence . 52

3.1.14 NUOPC_DriverIngestRunSequence . 55

3.1.15 NUOPC_DriverNewRunSequence . 56

3.1.16 NUOPC_DriverPrint . 56

1

3.1.17 NUOPC_DriverSetRunSequence . 57

3.2 Generic Component: NUOPC_ModelBase . 57

3.3 Generic Component: NUOPC_Model . 59

3.3.1 NUOPC_ModelGet . 61

3.4 Generic Component: NUOPC_Mediator . 61

3.4.1 NUOPC_MediatorGet . 63

3.5 Generic Component: NUOPC_Connector . 63

3.5.1 NUOPC_ConnectorGet . 64

3.5.2 NUOPC_ConnectorSet . 65

3.6 General Generic Component Methods . 67

3.6.1 NUOPC_CompAreServicesSet . 67

3.6.2 NUOPC_CompAreServicesSet . 67

3.6.3 NUOPC_CompAttributeAdd . 68

3.6.4 NUOPC_CompAttributeAdd . 68

3.6.5 NUOPC_CompAttributeEgest . 68

3.6.6 NUOPC_CompAttributeEgest . 69

3.6.7 NUOPC_CompAttributeGet . 69

3.6.8 NUOPC_CompAttributeGet . 70

3.6.9 NUOPC_CompAttributeGet . 71

3.6.10 NUOPC_CompAttributeGet . 72

3.6.11 NUOPC_CompAttributeGet . 72

3.6.12 NUOPC_CompAttributeGet . 73

3.6.13 NUOPC_CompAttributeGet . 74

3.6.14 NUOPC_CompAttributeGet . 75

3.6.15 NUOPC_CompAttributeIngest . 76

3.6.16 NUOPC_CompAttributeIngest . 77

3.6.17 NUOPC_CompAttributeIngest . 78

3.6.18 NUOPC_CompAttributeIngest . 79

3.6.19 NUOPC_CompAttributeReset . 80

3.6.20 NUOPC_CompAttributeReset . 80

3.6.21 NUOPC_CompAttributeSet . 80

3.6.22 NUOPC_CompAttributeSet . 81

3.6.23 NUOPC_CompAttributeSet . 81

3.6.24 NUOPC_CompAttributeSet . 82

3.6.25 NUOPC_CompAttributeSet . 82

3.6.26 NUOPC_CompAttributeSet . 83

3.6.27 NUOPC_CompCheckSetClock . 83

3.6.28 NUOPC_CompDerive . 84

3.6.29 NUOPC_CompDerive . 84

3.6.30 NUOPC_CompFilterPhaseMap . 85

3.6.31 NUOPC_CompFilterPhaseMap . 85

3.6.32 NUOPC_CompGet . 86

3.6.33 NUOPC_CompGet . 86

3.6.34 NUOPC_CompSearchPhaseMap . 87

3.6.35 NUOPC_CompSearchPhaseMap . 87

3.6.36 NUOPC_CompSearchRevPhaseMap . 88

3.6.37 NUOPC_CompSearchRevPhaseMap . 88

3.6.38 NUOPC_CompSetClock . 89

3.6.39 NUOPC_CompSetEntryPoint . 89

3.6.40 NUOPC_CompSetEntryPoint . 90

3.6.41 NUOPC_CompSetInternalEntryPoint . 90

2

3.6.42 NUOPC_CompSetServices . 91

3.6.43 NUOPC_CompSetVM . 92

3.6.44 NUOPC_CompSpecialize . 92

3.6.45 NUOPC_CompSpecialize . 93

3.7 Field Dictionary Methods . 93

3.7.1 NUOPC_FieldDictionaryAddEntry . 93

3.7.2 NUOPC_FieldDictionaryEgest . 94

3.7.3 NUOPC_FieldDictionaryGetEntry . 94

3.7.4 NUOPC_FieldDictionaryHasEntry . 95

3.7.5 NUOPC_FieldDictionaryMatchSyno . 95

3.7.6 NUOPC_FieldDictionarySetSyno . 96

3.7.7 NUOPC_FieldDictionarySetup . 96

3.7.8 NUOPC_FieldDictionarySetup . 96

3.8 Free Format Methods . 97

3.8.1 NUOPC_FreeFormatAdd . 97

3.8.2 NUOPC_FreeFormatCreate . 97

3.8.3 NUOPC_FreeFormatCreate . 98

3.8.4 NUOPC_FreeFormatDestroy . 98

3.8.5 NUOPC_FreeFormatGet . 99

3.8.6 NUOPC_FreeFormatGetLine . 99

3.8.7 NUOPC_FreeFormatLog . 100

3.8.8 NUOPC_FreeFormatPrint . 100

3.9 Utility Routines . 100

3.9.1 NUOPC_AddNamespace . 100

3.9.2 NUOPC_AddNestedState . 101

3.9.3 NUOPC_Advertise . 102

3.9.4 NUOPC_Advertise . 103

3.9.5 NUOPC_AdjustClock . 104

3.9.6 NUOPC_CheckSetClock . 105

3.9.7 NUOPC_GetAttribute . 106

3.9.8 NUOPC_GetAttribute . 106

3.9.9 NUOPC_GetAttribute . 107

3.9.10 NUOPC_GetStateMemberLists . 108

3.9.11 NUOPC_GetStateMemberCount . 109

3.9.12 NUOPC_GetTimestamp . 110

3.9.13 NUOPC_IngestPetList . 110

3.9.14 NUOPC_IngestPetList . 111

3.9.15 NUOPC_IsAtTime . 112

3.9.16 NUOPC_IsAtTime . 112

3.9.17 NUOPC_IsConnected . 113

3.9.18 NUOPC_IsConnected . 114

3.9.19 NUOPC_IsUpdated . 115

3.9.20 NUOPC_IsUpdated . 115

3.9.21 NUOPC_NoOp . 116

3.9.22 NUOPC_Realize . 116

3.9.23 NUOPC_Realize . 118

3.9.24 NUOPC_Realize . 119

3.9.25 NUOPC_Realize . 120

3.9.26 NUOPC_Realize . 120

3.9.27 NUOPC_SetAttribute . 122

3.9.28 NUOPC_SetAttribute . 122

3

3.9.29 NUOPC_SetTimestamp . 123

3.9.30 NUOPC_SetTimestamp . 124

3.9.31 NUOPC_SetTimestamp . 124

3.9.32 NUOPC_SetTimestamp . 125

3.9.33 NUOPC_SetTimestamp . 125

3.10 Auxiliary Routines . 126

3.10.1 NUOPC_Write . 126

3.10.2 NUOPC_Write . 127

3.10.3 NUOPC_Write . 127

3.10.4 NUOPC_Write . 128

3.10.5 NUOPC_Write . 130

4 Standardized Component Dependencies 132

4.1 Fortran components that are statically built into the executable . 133

4.2 Fortran components that are provided as shared libraries . 136

4.3 Components that are loaded during run-time as shared objects . 137

4.4 Components that depend on components . 138

4.5 Components written in C/C++ . 140

5 NUOPC Layer Compliance 143

5.1 The Compliance Checker . 143

5.2 The Component Explorer . 145

6 Appendix A: Run Sequence Implementation 148

7 Appendix B: Initialize Phase Definition Versions 149

7.1 NUOPC_Driver IPD implementation . 153

7.2 NUOPC_ModelBase IPD implementation . 155

7.3 NUOPC_Model IPD implementation . 156

7.3.1 Initialize Phase Specialization - label_SetClock . 159

7.3.2 Initialize Phase Specialization - label_DataInitialize . 159

7.3.3 Run Phase Specialization - label_SetRunClock . 159

7.3.4 Run Phase Specialization - label_CheckImport . 159

7.3.5 Run Phase Specialization - label_Advance . 159

7.3.6 Run Phase Specialization - label_TimestampExport . 160

7.3.7 Finalize Phase Specialization - label_Finalize . 160

7.4 NUOPC_Mediator IPD implementation . 160

7.5 NUOPC_Connector IPD implementation . 161

4

1 Description

The NUOPC Layer is an add-on to the standard ESMF library. It consists of generic code of two different kinds: utility

routines and generic components. The NUOPC Layer further implements a dictionary for standard field metadata.

The utility routines are subroutines and functions that package frequently used calling sequences of ESMF methods

into single calls. Unlike the pure ESMF API, which is very class centric, the utility routines of the NUOPC Layer

often implement tasks that involve several ESMF classes.

The generic components are provided in form of Fortran modules that implement GridComp and CplComp specific

methods. Generic components are useful when implementing NUOPC compliant driver, model, mediator, or connector

components. The provided generic components form a hierarchy that allows the developer to pick and choose the

appropriate level of specification for a certain application. Depending on how specific the chosen level, generic

components require more or less specialization to result in fully implemented components.

2 Design and Implementation Notes

The NUOPC Layer is implemented in Fortran on top of the public ESMF Fortran API.

The NUOPC utility routines form a very straightforward Fortran API, accessible through the NUOPC Fortran module.

The interfaces only use native Fortran types and public ESMF derived types. In order to access the utility API of the

NUOPC Layer, user code must include the following two use lines:

use ESMF

use NUOPC

2.1 Generic Components

The NUOPC generic components are implemented as a collection of Fortran modules. Each module implements a sin-

gle, well specified set of standard ESMF_GridComp or ESMF_CplComp methods. The nomenclature of the generic

component modules starts with the NUOPC_ prefix and continues with the kind: Driver, Model, Mediator, or

Connector. The four kinds of generic components implemented by the NUOPC Layer are:

• NUOPC_Driver - A generic driver component. It implements a child component harness, made of State

and Component objects, that follows the NUOPC Common Model Architecture. It is specialized by plugging

Model, Mediator, and Connector components into the harness. Driver components can be plugged

into the harness to construct component hierarchies. The generic Driver initializes its child components

according to a standard Initialization Phase Definition, and drives their Run() methods according a customizable

run sequence.

• NUOPC_Model - A generic model component that wraps a model code so it is suitable to be plugged into a

generic Driver component.

• NUOPC_Mediator - A generic mediator component that wraps custom coupling code (flux calculations, av-

eraging, etc.) so it is suitable to be plugged into a generic Driver component.

• NUOPC_Connector - A generic component that implements Field matching based on metadata and executes

simple transforms (Regrid and Redist). It can be plugged into a generic Driver component.

5

The user code accesses the desired generic component(s) by including a use line for each one. Each generic com-

ponent defines a small set of public names that are made available to the user code through the use statement. At a

minimum the SetServices method is made public. Some of the generic components define additional public rou-

tines and labels as part of their user interface. It is recommended to rename entries of an imported generic component

module, such as SetServices, in the local scope as part of the use association to prevent potential name clashes.

use NUOPC_<GenericComp>, &

<GenericComp>SS => SetServices

A generic component is used by user code to implement a specialized version of the generic component. The user

component derives from the generic component code by implementing its own public SetServices routine that

calls into the generic SetServices routine via the NUOPC_CompDerive() method. Typically this should be the

first call made before doing anything else. It is through this mechanism that the deriving component inherits function-

ality that is implemented in the generic component. The example below shows how a specific model component is

implemented, deriving from the generic NUOPC_Model:

use NUOPC_Model, &

modelSS => SetServices

subroutine SetServices(model, rc)

type(ESMF_GridComp) :: model

integer, intent(out) :: rc

! derive from NUOPC_Model

call NUOPC_CompDerive(model, modelSS, rc=rc)

! specialize model

!... calls to NUOPC_CompSpecialize() here

end subroutine

2.1.1 Component Specialization

After the call to NUOPC_CompDerive() in a component’s SetServices() method, the component is connected

to all of the generic code provided by NUOPC for the respective component kind. In order to function properly, e.g.

as an atmosphere model, ocean model, driver, etc., the component must be specialized.

The NUOPC_CompSpecialize() method is used to link specific user provided routines to pre-defined NUOPC

specialization points. The labels of the pre-defined specialization points are use associated named constants made

available by the respective generic component module. The naming of all pre-defined specialization labels starts with

the label_ prefix, and is followed by a short intent of the specialization. E.g. label_Advertise refers to the

specialization point responsible for advertising Fields in the import- and exportStates of the component.

There are pre-defined specialization labels for Initialize, Run, and Finalize phases. Section 2.4.1 discusses the se-

mantic labeling of specializations in greater detail. Lists of all pre-defined specialization labels for Initialize, Run,

and Finalize, for each of the generic NUOPC component kinds, are provided at the beginning of the respective API

sections. (Driver: 3.1, Model: 3.3, Mediator: 3.4, Connector: 3.5)

The following code snippet shows a full specialization of NUOPC_Model, using three specialization labels:

use NUOPC_Model, &

6

modelSS => SetServices

subroutine SetServices(model, rc)

type(ESMF_GridComp) :: model

integer, intent(out) :: rc

rc = ESMF_SUCCESS

! derive from NUOPC_Model

call NUOPC_CompDerive(model, modelSS, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

return ! bail out

! specialize model

call NUOPC_CompSpecialize(model, specLabel=label_Advertise, &

specRoutine=Advertise, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

return ! bail out

call NUOPC_CompSpecialize(model, specLabel=label_RealizeProvided, &

specRoutine=Realize, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

return ! bail out

call NUOPC_CompSpecialize(model, specLabel=label_Advance, &

specRoutine=Advance, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

return ! bail out

end subroutine

The user implemented specialization routines must follow the NUOPC interface definition.

subroutine SpecRoutine(comp, rc)

type(ESMF_*Comp) :: comp

integer, intent(out) :: rc

end subroutine

Here type(ESMF_*Comp) either corresponds to type(ESMF_GridComp) for Models, Mediators, and Drivers,

or type(ESMF_CplComp) for Connectors.

7

2.1.2 Partial Specialization

Components that are derived from a generic component may choose to only specialize certain aspects, leaving other

aspects unspecified. This allows a hierarchy of generic components to be implemented with a high degree of code

re-use. The variable level of specialization supports the very differing user needs. Figure 1 depicts the inheritance

structure of the standard generic components implemented by the NUOPC Layer. There are two trees, one is rooted in

ESMF_GridComp, while the other is rooted in ESMF_CplComp.

NUOPC_ModelBase

NUOPC_Model NUOPC_Mediator NUOPC_Driver NUOPC_Connector

ESMF_GridComp ESMF_CplComp

Figure 1: The NUOPC Generic Component inheritance structure. The tree on the left is rooted in ESMF_GridComp,

while the tree on the right is rooted in ESMF_CplComp. The ESMF data types are shown in green. The four main

NUOPC Generic Component kinds are shown in dark blue boxes. The yellow box shows a partial specialization in the

inheritance tree.

8

2.2 Field Dictionary

The NUOPC Layer uses standard metadata on Fields to guide the decision making process that is implemented in

generic code. The generic NUOPC_Connector component, for instance, uses the StandardName Attribute to

construct a list of matching Fields between the import and export States. The NUOPC Field Dictionary provides a

software implementation of a controlled vocabulary for the StandardName Field Attribute. It also associates each

registered StandardName with CanonicalUnits. Currently the NUOPC Layer uses the CanonicalUnits

entry to verify that Fields are provided in their canonical units. In the future, this entry may help support automatic

unit conversion among exchanged fields.

The NUOPC Field Dictionary is set up by loading its content from a YAML 1.2 file. See section 2.2.1 for details.

Users can extend the dictionary by adding entries (field definitions or synonyms) to the YAML file, or by calling the

NUOPC_FieldDictionaryAddEntry() interface.

2.2.1 Field Dictionary file

In a given NUOPC application, the NUOPC Field Dictionary can be set up by calling the

NUOPC_FieldDictionarySetup() method to read in a properly-formatted YAML file. This feature is

intended to improve the interoperability of codes that use the NUOPC Layer, as it allows a broader scientific

community to contribute to the growth and upkeep of a common NUOPC Field Dictionary file shared among different

Earth System Models. At this time, an initial version of the NUOPC Field Dictionary file is available through the

dedicated GitHub repository: https://github.com/ESCOMP/NUOPCFieldDictionary, hosted within the Earth System

Community Modeling Portal (ESCOMP).

A NUOPC Field Dictionary YAML file is codified as a YAML map (an unordered association of unique keys to values)

with only one key: field_dictionary. The value associated with this key is itself a YAML map that should

include the mandatory key entries (pointing to the complete set of dictionary entries), and may include the optional

keys: version_number, last_modified, institution, contact, source, and description. These

optional keys are intended to hold information about the file itself and are currently ignored by the NUOPC Layer.

Entries in the NUOPC Field dictionary are organized as YAML lists of maps. List items under the entries keyword

must be indented and preceded with a hyphen (-).

A dictionary entry fully defines a Field if it includes both the standard_name and canonical_units keys and

their associated values. This entry may also include a brief narrative describing the Field, stored as the value of the

optional key description.

Synonyms can be defined by adding separate entries that include both the alias key, associated with either a single

synonym (YAML scalar, e.g. alias: <name>) or a comma-separated list of synonyms within square brackets

(YAML flow sequence, e.g. alias: [<name1>, <name2>, ...]), and the standard_name key associ-

ated with the original Field name to be substituted. The original Field name must be fully defined in the dictionary file.

While adding one alias keyword to a Field definition dictionary entry is allowed and will be parsed by the NUOPC

Layer, it is recommended that all synonyms be included as separate entries.

A NUOPC Field dictionary sample file is included below.

field_dictionary:

version_number: 0.0.1

last_modified: 2018-03-14T11:01:19Z

institution: National ESPC, CSC & MCL Working Groups

contact: esmf_support@ucar.edu

9

http://yaml.org/spec/1.2/spec.html
https://github.com/ESCOMP/NUOPCFieldDictionary
https://github.com/ESCOMP

source: https://github.com/ESCOMP/NUOPCFieldDictionary

description: Community-based dictionary for shared coupling fields

entries:

- standard_name: air_pressure

canonical_units: Pa

description: Air pressure

- standard_name: air_temperature

canonical_units: K

description:

Bulk temperature of the air,

not the surface (skin) temperature

- alias: p

standard_name: air_pressure

- alias: [t, temp]

standard_name: air_temperature

2.2.2 Preloaded Field Dictionary

A version of the NUOPC Field Dictionary is preloaded by the NUOPC Layer at start-up, and, at this time, consists

of the entries show in the table below. The value of the StandardName Attribute in each of these entries complies

with the Climate and Forecast (CF) conventions guidelines.

StandardName CanonicalUnits

air_pressure_at_sea_level Pa

magnitude_of_surface_downward_stress Pa

precipitation_flux kg m-2 s-1

sea_surface_height_above_sea_level m

sea_surface_salinity 1e-3

sea_surface_temperature K

surface_downward_eastward_stress Pa

surface_downward_heat_flux_in_air W m-2

surface_downward_northward_stress Pa

surface_downward_water_flux kg m-2 s-1

surface_eastward_sea_water_velocity m s-1

surface_net_downward_longwave_flux W m-2

surface_net_downward_shortwave_flux W m-2

surface_northward_sea_water_velocity m s-1

2.3 Metadata

The NUOPC Layer makes extensive use of the ESMF Attribute class to implement metadata on Components, States,

and Fields. ESMF Attribute Packages (or AttPacks for short) are used to build an Attribute hierarchy for each object.

In some cases the lowest level NUOPC AttPack contains a nested AttPack defined by ESMF. For all objects, the

highest level of the NUOPC AttPack hierarchy is implemented with convention="NUOPC", purpose="Instance". The

public NUOPC Layer API allows a user to add Attributes to the highest AttPack hierarchy level.

10

http://cfconventions.org/Data/cf-standard-names/docs/guidelines.html

2.3.1 Driver Component Metadata

The Driver Component metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "Verbosity" is accessed

using key="/NUOPC/Instance/Verbosity".

Note that some of the Attribute names in the following table are longer than the table column width. In these cases the

Attribute name had to be broken into multiple lines. When that happens, a hyphen shows up to indicate the line break.

The hyphen is not part of the Attribute name!

Attribute name Definition Controlled vocabulary

Kind String value indicating component kind. Driver

Verbosity String value, converted into an integer, and interpreted as

a bit field. The lower 16 bits (0-15) are reserved to con-

trol verbosity of the generic component implementation.

Higher bits are available for user level verbosity control.

bit 0: Intro/Extro of methods with indentation.

bit 1: Intro/Extro with memory info.

bit 2: Intro/Extro with garbage collection info.

bit 3: Intro/Extro with local VM info.

bit 4: Intro/Extro with ImportState info.

bit 5: Intro/Extro with ExportState info.

bit 6: Log hierarchy protocol details.

bit 8: Log Initialize phase with >>>, <<<, and cur-

rTime.

bit 9: Log Run phase with >>>, <<<, and currTime.

bit 10: Log Finalize phase with >>>, <<<, and cur-

rTime.

bit 11: Log info about data dependency during initialize

resolution.

bit 12: Log run sequence execution.

bit 13: Log Component creation and destruction.

bit 14: Log State creation and destruction.

0, 1, 2, ...

"off" = 0 (default),

"low": some verbosity, bits: 0, 8, 9,

10, 13

"high": more verbosity, bits: 0, 4,

5, 6, 8, 9, 10, 11, 12, 13, 14

"max": all lower 16 bits

Profiling String value, converted into an integer, and interpreted as a

bit field. The lower 16 bits (0-15) are reserved to control

profiling of the generic component implementation. Higher

bits are available for user level profiling control.

bit 0: Top level profiling of Initialize phases.

bit 1: Specialization point profiling of Initialize phases.

bit 2: Additional profiling of internals of Initialize phases.

bit 3: Top level profiling of Run phases.

bit 4: Specialization point profiling of Run phases.

bit 5: Additional profiling of internals of Run phases.

bit 6: Top level profiling of Finalize phases.

bit 7: Specialization point profiling of Finalize phases.

bit 8: Additional profiling of internals of Finalize phases.

bit 9: Leading barrier for Initialize phases.

bit 10: Leading barrier for Run phases.

bit 11: Leading barrier for Finalize phases.

bit 12: Run sequence iteration events.

0, 1, 2, ...

"off" = 0 (default),

"low": Top level profiling.

"high": Top level, specialization

point profiling, and additional pro-

filing of internals.

"max": All lower 16 bits set.

11

CompLabel String value holding the label under which the component

was added to its parent driver.

no restriction

InitializePhaseMap List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

RunPhaseMap List of string values, mapping the logical NUOPC run

phases to the actual ESMF run phase number under which

the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

FinalizePhaseMap List of string values, mapping the logical NUOPC final-

ize phases to the actual ESMF finalize phase number under

which the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

Internal-

InitializePhaseMap

List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

NestingGeneration Integer value enumerating nesting level. 0, 1, 2, ...

Nestling Integer value enumerating siblings within the same gener-

ation.

0, 1, 2, ...

Initialize-

DataResolution

String value indicating whether the resolution loop is dis-

abled or enabled.

false, true

Initialize-

DataComplete

String value indicating whether all initialize data dependen-

cies have been satisfied.

false, true

Initialize-

DataProgress

String value indicating whether progress is being made re-

solving initialize data dependencies.

false, true

HierarchyProtocol String value specifying the hierarchy protocol. "PushUpAllExportsAndUnsatisfiedImports"

- activates field mirroring of all

exports and unsatisfied imports.

By default use reference shar-

ing for the mirrored fields and

geom objects. This is the de-

fault behavior without having

HierarchyProtocol set.

"ConnectProvidedFields"- no field

mirroring, only connect to exter-

nally provided fields in the import-

and exportStates. "Explorer" - like

the default, but do not use reference

sharing. All other values currently

disable the hierarchy protocol.

2.3.2 Model Component Metadata

The Model Component metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "Verbosity" is accessed

using key="/NUOPC/Instance/Verbosity".

12

Note that some of the Attribute names in the following table are longer than the table column width. In these cases the

Attribute name had to be broken into multiple lines. When that happens, a hyphen shows up to indicate the line break.

The hyphen is not part of the Attribute name!

Attribute name Definition Controlled vocabulary

Kind String value indicating component kind. Model

Verbosity String value, converted into an integer, and interpreted as

a bit field. The lower 16 bits (0-15) are reserved to con-

trol verbosity of the generic component implementation.

Higher bits are available for user level verbosity control.

bit 0: Intro/Extro of methods with indentation.

bit 1: Intro/Extro with memory info.

bit 2: Intro/Extro with garbage collection info.

bit 3: Intro/Extro with local VM info.

bit 4: Intro/Extro with ImportState info.

bit 5: Intro/Extro with ExportState info.

bit 8: Log Initialize phase with >>>, <<<, and cur-

rTime.

bit 9: Log Run phase with >>>, <<<, and currTime.

bit 10: Log Finalize phase with >>>, <<<, and cur-

rTime.

bit 11: Log info about data dependency during initialize

resolution.

bit 12: Log run sequence execution.

0, 1, 2, ...

"off" = 0 (default),

"low": some verbosity, bits: 0, 8, 9,

10, 13

"high": more verbosity, bits: 0, 4,

5, 8, 9, 10, 11, 12, 13, 14

"max": all lower 16 bits

Profiling String value, converted into an integer, and interpreted as a

bit field. The lower 16 bits (0-15) are reserved to control

profiling of the generic component implementation. Higher

bits are available for user level profiling control.

bit 0: Top level profiling of Initialize phases.

bit 1: Specialization point profiling of Initialize phases.

bit 2: Additional profiling of internals of Initialize phases.

bit 3: Top level profiling of Run phases.

bit 4: Specialization point profiling of Run phases.

bit 5: Additional profiling of internals of Run phases.

bit 6: Top level profiling of Finalize phases.

bit 7: Specialization point profiling of Finalize phases.

bit 8: Additional profiling of internals of Finalize phases.

bit 9: Leading barrier for Initialize phases.

bit 10: Leading barrier for Run phases.

bit 11: Leading barrier for Finalize phases.

0, 1, 2, ...

"off" = 0 (default),

"low": Top level profiling.

"high": Top level, specialization

point profiling, and additional pro-

filing of internals.

"max": All lower 16 bits set.

13

Diagnostic String value, converted into an integer, and interpreted as

a bit field. The lower 16 bits (0-15) are reserved to con-

trol diagnostic of the generic component implementation.

Higher bits are available for user level diagnostic control.

bit 0: Dump fields of the importState on entering Initialize

phases.

bit 1: Dump fields of the exportState on entering Initialize

phases.

bit 2: Dump fields of the importState on exiting Initialize

phases.

bit 3: Dump fields of the exportState on exiting Initialize

phases.

bit 4: Dump fields of the importState on entering Run

phases.

bit 5: Dump fields of the exportState on entering Run

phases.

bit 6: Dump fields of the importState on exiting Run

phases.

bit 7: Dump fields of the exportState on exiting Run phases.

bit 8: Dump fields of the importState on entering Finalize

phases.

bit 9: Dump fields of the exportState on entering Finalize

phases.

bit 10: Dump fields of the importState on exiting Finalize

phases.

bit 11: Dump fields of the exportState on exiting Finalize

phases.

0, 1, 2, ...

"off" = 0 (default),

"max": All lower 16 bits set.

CompLabel String value holding the label under which the component

was added to its parent driver.

no restriction

InitializePhaseMap List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

RunPhaseMap List of string values, mapping the logical NUOPC run

phases to the actual ESMF run phase number under which

the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

FinalizePhaseMap List of string values, mapping the logical NUOPC final-

ize phases to the actual ESMF finalize phase number under

which the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

Internal-

InitializePhaseMap

List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

NestingGeneration Integer value enumerating nesting level. 0, 1, 2, ...

Nestling Integer value enumerating siblings within the same gener-

ation.

0, 1, 2, ...

Initialize-

DataComplete

String value indicating whether all initialize data dependen-

cies have been satisfied.

false, true

14

Initialize-

DataProgress

String value indicating whether progress is being made re-

solving initialize data dependencies.

false, true

HierarchyProtocol String value specifying the hierarchy protocol. "PushUpAllExportsAndUnsatisfiedImports"

for field mirroring and connecting,

"ConnectProvidedFields" to only

connect provided fields (no mir-

roring), All other values currently

disable the hierarchy protocol.

2.3.3 Mediator Component Metadata

The Mediator Component metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "Verbosity" is accessed

using key="/NUOPC/Instance/Verbosity".

Note that some of the Attribute names in the following table are longer than the table column width. In these cases the

Attribute name had to be broken into multiple lines. When that happens, a hyphen shows up to indicate the line break.

The hyphen is not part of the Attribute name!

Attribute name Definition Controlled vocabulary

Kind String value indicating component kind. Mediator

Verbosity String value, converted into an integer, and interpreted as

a bit field. The lower 16 bits (0-15) are reserved to con-

trol verbosity of the generic component implementation.

Higher bits are available for user level verbosity control.

bit 0: Intro/Extro of methods with indentation.

bit 1: Intro/Extro with memory info.

bit 2: Intro/Extro with garbage collection info.

bit 3: Intro/Extro with local VM info.

bit 4: Intro/Extro with ImportState info.

bit 5: Intro/Extro with ExportState info.

bit 8: Log Initialize phase with >>>, <<<, and cur-

rTime.

bit 9: Log Run phase with >>>, <<<, and currTime.

bit 10: Log Finalize phase with >>>, <<<, and cur-

rTime.

bit 11: Log info about data dependency during initialize

resolution.

bit 12: Log run sequence execution.

0, 1, 2, ...

"off" = 0 (default),

"low": some verbosity, bits: 0, 8, 9,

10, 13

"high": more verbosity, bits: 0, 4,

5, 8, 9, 10, 11, 12, 13, 14

"max": all lower 16 bits

15

Profiling String value, converted into an integer, and interpreted as a

bit field. The lower 16 bits (0-15) are reserved to control

profiling of the generic component implementation. Higher

bits are available for user level profiling control.

bit 0: Top level profiling of Initialize phases.

bit 1: Specialization point profiling of Initialize phases.

bit 2: Additional profiling of internals of Initialize phases.

bit 3: Top level profiling of Run phases.

bit 4: Specialization point profiling of Run phases.

bit 5: Additional profiling of internals of Run phases.

bit 6: Top level profiling of Finalize phases.

bit 7: Specialization point profiling of Finalize phases.

bit 8: Additional profiling of internals of Finalize phases.

bit 9: Leading barrier for Initialize phases.

bit 10: Leading barrier for Run phases.

bit 11: Leading barrier for Finalize phases.

0, 1, 2, ...

"off" = 0 (default),

"low": Top level profiling.

"high": Top level, specialization

point profiling, and additional pro-

filing of internals.

"max": All lower 16 bits set.

Diagnostic String value, converted into an integer, and interpreted as

a bit field. The lower 16 bits (0-15) are reserved to con-

trol diagnostic of the generic component implementation.

Higher bits are available for user level diagnostic control.

bit 0: Dump fields of the importState on entering Initialize

phases.

bit 1: Dump fields of the exportState on entering Initialize

phases.

bit 2: Dump fields of the importState on exiting Initialize

phases.

bit 3: Dump fields of the exportState on exiting Initialize

phases.

bit 4: Dump fields of the importState on entering Run

phases.

bit 5: Dump fields of the exportState on entering Run

phases.

bit 6: Dump fields of the importState on exiting Run

phases.

bit 7: Dump fields of the exportState on exiting Run phases.

bit 8: Dump fields of the importState on entering Finalize

phases.

bit 9: Dump fields of the exportState on entering Finalize

phases.

bit 10: Dump fields of the importState on exiting Finalize

phases.

bit 11: Dump fields of the exportState on exiting Finalize

phases.

0, 1, 2, ...

"off" = 0 (default),

"max": All lower 16 bits set.

CompLabel String value holding the label under which the component

was added to its parent driver.

no restriction

16

InitializePhaseMap List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

RunPhaseMap List of string values, mapping the logical NUOPC run

phases to the actual ESMF run phase number under which

the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

FinalizePhaseMap List of string values, mapping the logical NUOPC final-

ize phases to the actual ESMF finalize phase number under

which the entry point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

Internal-

InitializePhaseMap

List of string values, mapping the logical NUOPC initial-

ize phases, of a specific Initialize Phase Definition (IPD)

version, to the actual ESMF initialize phase number under

which the entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

NestingGeneration Integer value enumerating nesting level. 0, 1, 2, ...

Nestling Integer value enumerating siblings within the same gener-

ation.

0, 1, 2, ...

Initialize-

DataComplete

String value indicating whether all initialize data dependen-

cies have been satisfied.

false, true

Initialize-

DataProgress

String value indicating whether progress is being made re-

solving initialize data dependencies.

false, true

HierarchyProtocol String value specifying the hierarchy protocol. "PushUpAllExportsAndUnsatisfiedImports"

for field mirroring and connecting,

"ConnectProvidedFields" to only

connect provided fields (no mir-

roring), All other values currently

disable the hierarchy protocol.

2.3.4 Connector Component Metadata

The Connector Component metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "Verbosity" is accessed

using key="/NUOPC/Instance/Verbosity".

Attribute name Definition Controlled vocabulary

Kind String value indicating component kind. Connector

17

Verbosity String value, converted into an integer, and in-

terpreted as a bit field. The lower 16 bits (0-15)

are reserved to control verbosity of the generic

component implementation. Higher bits are

available for user level verbosity control.

bit 0: Intro/Extro of methods with indentation.

bit 1: Intro/Extro with memory info.

bit 2: Intro/Extro with garbage collection info.

bit 3: Intro/Extro with local VM info.

bit 4: Intro/Extro with ImportState info.

bit 5: Intro/Extro with ExportState info.

bit 8: Log FieldTransferPolicy.

bit 9: Log bond level info.

bit 10: Log CplList construction.

bit 11: Log GeomObject Transfer.

bit 12: Log looping over all elements in

CplList for RouteHandle computation, Field-

Sharing, and Timestamp propagation.

bit 13: Log Run phase with >>>, <<<, and

currTime.

bit 14: Log info about RouteHandle execution.

bit 15: Log info about RouteHandle release.

0, 1, 2, ...

"off" = 0 (default),

"low": some verbosity, bits: 0, 13

"high": more verbosity, bits: 0, 4,

5, 8, 9, 10, 11, 12, 13, 14, 15

"max": all lower 16 bits

Profiling String value, converted into an integer, and in-

terpreted as a bit field. The lower 16 bits (0-15)

are reserved to control profiling of the generic

component implementation. Higher bits are

available for user level profiling control.

bit 0: Top level profiling of Initialize phases.

bit 1: Specialization point profiling of Initial-

ize phases.

bit 2: Additional profiling of internals of Ini-

tialize phases.

bit 3: Top level profiling of Run phases.

bit 4: Specialization point profiling of Run

phases.

bit 5: Additional profiling of internals of Run

phases.

bit 6: Top level profiling of Finalize phases.

bit 7: Specialization point profiling of Finalize

phases.

bit 8: Additional profiling of internals of Final-

ize phases.

bit 9: Leading barrier for Initialize phases.

bit 10: Leading barrier for Run phases.

bit 11: Leading barrier for Finalize phases.

0, 1, 2, ...

"off" = 0 (default),

"low": Top level profiling.

"high": Top level, specialization

point profiling, and additional pro-

filing of internals.

"max": All lower 16 bits set.

18

Diagnostic String value, converted into an integer, and in-

terpreted as a bit field. The lower 16 bits (0-15)

are reserved to control diagnostic of the generic

component implementation. Higher bits are

available for user level diagnostic control.

bit 0: Dump fields of the importState on enter-

ing Initialize phases.

bit 1: Dump fields of the exportState on enter-

ing Initialize phases.

bit 2: Dump fields of the importState on exit-

ing Initialize phases.

bit 3: Dump fields of the exportState on exiting

Initialize phases.

bit 4: Dump fields of the importState on enter-

ing Run phases.

bit 5: Dump fields of the exportState on enter-

ing Run phases.

bit 6: Dump fields of the importState on exit-

ing Run phases.

bit 7: Dump fields of the exportState on exiting

Run phases.

bit 8: Dump fields of the importState on enter-

ing Finalize phases.

bit 9: Dump fields of the exportState on enter-

ing Finalize phases.

bit 10: Dump fields of the importState on exit-

ing Finalize phases.

bit 11: Dump fields of the exportState on exit-

ing Finalize phases.

0, 1, 2, ...

"off" = 0 (default),

"max": All lower 16 bits set.

CompLabel String value holding the label under which the

component was added to its parent driver.

no restriction

InitializePhaseMap List of string values, mapping the logical

NUOPC initialize phases, of a specific Initial-

ize Phase Definition (IPD) version, to the actual

ESMF initialize phase number under which the

entry point is registered.

IPDvXXpY=Z, where XX = two-

digit revision number, e.g. 01, Y

= logical NUOPC phase number, Z

= actual ESMF phase number, with

Y, Z > 0 and Y, Z < 10

RunPhaseMap List of string values, mapping the logical

NUOPC run phases to the actual ESMF run

phase number under which the entry point is

registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

FinalizePhaseMap List of string values, mapping the logical

NUOPC finalize phases to the actual ESMF

finalize phase number under which the entry

point is registered.

label-string=Z, where label-string

can be chosen freely, and Z = ac-

tual ESMF phase number.

CplList List of StandardNames of the connected Fields.

Each StandardName entry may be followed by

a colon separated list of connection options.

The details are discussed in section 2.4.5

Standard names as per field dictio-

nary, followed by connection op-

tions defined in section 2.4.5.

CplSetList List of coupling sets. Each coupling set is iden-

tified by a string value.

no restriction

19

ConnectionOptions String value specifying the connection options

to be applied to all the fields in the CplList

by default.

Connection options defined in sec-

tion 2.4.5.

EpochEnable String value specifying whether EPOCH sup-

port is enabled inside the Connector. The de-

fault setting is "true".

false, true

EpochEnterKeepAlloc String value specifying whether to keep inter-

nal allocations when entering the EPOCH for

reuse. The default setting is "true".

false, true

EpochExitKeepAlloc String value specifying whether to keep inter-

nal allocations when exiting the EPOCH for

reuse. The default setting is "true".

false, true

EpochThrottle Integer specifying the maximum number of

outstanding EPOCH messages between any

two PETs. The default throttle level is 10.

Any positive integer.

2.3.5 State Metadata

The State metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "Namespace" is accessed

using key="/NUOPC/Instance/Namespace".

Attribute name Definition Controlled vocabulary

Namespace String value holding the namespace that applies

to all of the objects contained in the State.

no restriction

FieldTransferPolicy String value indicating to Connector whether to

mirror transfer Fields into this State.

transferNone,

transferAll,

transferAllWithNamespace

CplSet String value holding the coupling set name that

applies to all of the objects contained in the

State.

no restriction

2.3.6 Field Metadata

The Field metadata is implemented through ESMF_Info. It can be accessed using the JSON Pointer

"/NUOPC/Instance/" prefix followed by the "Attribute name" as per the table below. E.g. "StandardName" is ac-

cessed using key="/NUOPC/Instance/StandardName".

Attribute name Definition Controlled vocabulary

StandardName String value no restriction

Units String value no restriction

LongName String value no restriction

ShortName String value no restriction

Connected Connected status. false, true

ProducerConnection String value indicating whether the Field has

been connected with a producer.

open, targeted,

connected

20

ConsumerConnection String value indicating whether the Field has

been connected with a consumer.

open, targeted,

connected

Updated String value indicating updated status during

initialization.

false, true

ProducerTransferOffer String value indicating a producer component’s

ability to transfer information about the adver-

tised Field, including its GeomObject.

will provide,

can provide,

cannot provide

ProducerTransferAction String value indicating the action a producer

component is supposed to take with respect

to transferring Field information, including its

GeomObject.

provide, accept

ConsumerTransferOffer String value indicating a consumer compo-

nent’s ability to transfer information about the

advertised Field, including its GeomObject.

will provide,

can provide,

cannot provide

ConsumerTransferAction String value indicating the action a consumer

component is supposed to take with respect

to transferring Field information, including its

GeomObject.

provide, accept

SharePolicyField String value indicating a component’s policy

with respect to sharing the Field data alloca-

tion.

share,

not share

ShareStatusField String value indicating the status with respect

to sharing the underlying Field data allocation

that was negotiated.

shared,

not shared

SharePolicyGeomObject String value indicating a component’s policy

with respect to sharing the Grid or Mesh on

which the advertised Field object is defined.

share,

not share

ShareStatusGeomObject String value indicating the status with respect

to sharing the underlying GeomObject that was

negotiated.

shared,

not shared

UngriddedLBound Integer value list. If present equals the

ungriddedLBound of the provider field

during a GeomObject transfer.

no restriction

UngriddedUBound Integer value list. If present equals the

ungriddedUBound of the provider

field.during a GeomObject transfer.

no restriction

GridToFieldMap Integer value list. If present equals

the gridToFieldMap of the provider

field.during a GeomObject transfer.

no restriction

ArbDimCount Integer value. If present equals the

arbDimCount of the provider field.during a

GeomObject transfer.

no restriction

MinIndex Integer value list. If present equals the

minIndex (of tile 1) of the provider

field.during a GeomObject transfer.

no restriction

MaxIndex Integer value list. If present equals the

maxIndex (of tile 1) of the provider

field.during a GeomObject transfer.

no restriction

21

TypeKind Integer value. If present equals the integer

representation of typekind of the provider

field.during a GeomObject transfer.

implementation dependent range

GeomLoc Integer value. If present equals the inte-

ger representation of staggerloc (for Grid)

or meshloc (for Mesh) of the provider

field.during a GeomObject transfer.

implementation dependent range

22

2.4 Initialization

2.4.1 Phase Maps, Semantic Specialization Labels, and Component Labels

The NUOPC layer adds an abstraction on top of the ESMF phase index. ESMF introduces the concept of standard

component methods: Initialize, Run, and Finalize. ESMF further recognizes the need for being able to split

each of the standard methods into multiple phases. On the ESMF level, phases are implemented by a simple integer

phase index. With NUOPC, logical phase labels are introduced that are mapped to the ESMF phase indices.

The NUOPC Layer introducing three component level attributes: InitializePhaseMap, RunPhaseMap, and

FinalizePhaseMap. These attributes map logical NUOPC phase labels to integer ESMF phase indices. A NUOPC

compliant component fully documents its available phases through the phase maps.

The generic NUOPC_Driver uses the InitializePhaseMap on each of its child component during the initializa-

tion stage to correctly interact with each component. The RunPhaseMap is used when setting up run sequences in the

Driver. The NUOPC_DriverAddRunElement() takes the phaseLabel argument, and uses the RunPhaseMap

attribute internally to translates the label into the corresponding ESMF phase index. The FinalizePhaseMap is

currently not used by the NUOPC Layer

Appendix B, section 7, lists the supported logical phase labels for reference. User code very rare needs to interact

with the InitializePhaseMap or its entries directly. Instead, user code specializes the initialization behavior of

a component through the semantic specialization labels discussed below.

NUOPC implements a very powerful initialization procedure. This procedure is, among other functions, capable of

handling component hierarchies, transfer of geometries, reference sharing, and resolving data dependencies during

initialization. The initialization features are discussed in detail in their respective sections of this document.

From the user level, specialization of the initialization is accessbile through the semantic specialization labels. These

labels are predefined named constants that are passed into the NUOPC_CompSpecialize() method, together with

the user provided routine, implementing the required actions. On a technical level, the user routine must follow the

standard interface defined by NUOPC. Semantically, the purpose of each specialization point is indicated by the name

of the predefined specialization label. For a definition of the labels, and the ascribed purpose, see the SEMANTIC

SPECIALIZATION LABELS section under each of the generic component kinds. (Driver: 3.1, Model: 3.3, Mediator:

3.4, Connector: 3.5)

Finally, under NUOPC, each component is associated with a label when it is added to a driver through the

NUOPC_DriverAddComp() call. Multiple instances of the same component can be added to a driver, provided

each instance is given a unique label. Connectors between components are identified by providing the label of the

source component and destination component.

2.4.2 Field Pairing

The NUOPC Model and Mediator components are required to advertise their import and export Fields with a standard

set of Field metadata. This set includes the StandardName attribute. The NUOPC Layer implements a strategy of

pairing advertised Fields that is based primarily on the StandardName of the Fields, and in more complex situations

further utilizes the Namespace attribute on States.

Field pairing is accomplished as part of the initialization procedure and is a collective effort of the Driver and its

child components: Models, Mediator, Connectors. The Connectors are the most active players when it comes to

Field pairing. The end result of the process is where each Connector has a list of Fields that it connects between its

importState and its exportState. Each connector keeps this list in its component level metadata as CplList attribute.

During the first stage of Field pairing, each Connector matches all of the Fields in its importState to all of the Fields

23

in its exportState by looking at their StandardName attribute. For every match a bondLevel is calculated and stored

in the Field on the export side, i.e. on the consumer side of the connection, in the Field’s ConsumerConnection

attribute. The larges found bondLevel is kept for each Field on the export side.

The bondLevel is a measure of how strong the pairing is considering the namespace rules explained in section 2.4.3.

Without the use of namespaces the bondLevel for all Field pairs that match by their StandardName is equal to 1.

After the first stage, there may be umbiguous Field pairs present. Ambiguous Field pairs are those that map differ-

ent producer Fields (i.e. Fields in the importState of a Connector) to the same consumer Field (i.e. a Field in the

exportState of a Connector). While the NUOPC Layer support having multiple consumer Fields connected to a sin-

gle producer Field, it does not support the opposite condition. The second stage of Field pairing is responsible for

disambiguating Field pairs with the same consumer Field.

Field pair disambiguation is based on the bondLevel that was calculated and stored on the consumer side Field for

each pair during the first stage. The disambiguation rule simply selects the connection with the highest bondLevel and

discards all lesser connection to the same consumer side Field. However, if the highest bondLevel is not unique, i.e.

there are multiple pairs with the same bondLevel, disambiguation is not possible and an error is returned to the Driver

by the Connector that finds the ambiguity first.

Assuming that the disambiguation step was successful, each Connector holds a valid CplList attribute with entries

that correspond to the Field pairs that it is responsible for. At this stage the Driver can still overwrite this attribute and

implement custom pairs if that is desired.

2.4.3 Namespaces

Namespaces are used to control and fine-tune the disambiguation of Field pairs during the initialization. The general

procedure of Field pairing and disambiguation is outlined in section 2.4.2, here the use of namespaces is described.

The NUOPC Layer implements namespaces through the Namespace attribute on ESMF_State objects. The value

of this attribute is a simple character string. The NUOPC Layer automatically creates the import and export States

of every Model and Mediator component that is added to a Driver. The Namespace attribute of these States is

automatically set to the compLabel string that was provided during NUOPC_DriverAdd(). Doing this places

every Field that is advertised through these States inside the component’s unique namespace.

A secondary namespace can be added to a State using the NUOPC_StateNamespaceAdd() method. This creates

a new State that is nested inside of an existing State, and sets the Namespace attribute of the new State. Fields that

are advertised inside of such a nested State are in a namespace with two parts: NS1:NS2. Here NS1 is the preset

namespace of the import or export State (equal to the compLabel), and NS2 is a freely chosen namespace string.

During Field pairing the namespace on each side of the connection is considered in the two part format NS1:NS2.

The first part is equal to the compLabel of the corresponding component, and NS2 is either the namespace of a nested

State, or empty if the Field is not inside a nested State. Using this format, the calculation of the bondLevel during

Field pairing is governed by the following rules:

• Namespace matching is done in a cross wise fashion, meaning NS1 from one side is compared to NS2 of the

other side, and vice versa.

• The bondLevel is incremented by one counter for each cross-wise match between namespaces. (Considering

that the bondLevel starts out as 1 for any Field pair with matching standard names, the maximum bondLevel

that can be reached is 3.)

• Finding one side of the cross-wise comparison being an empty string is neither counted as a match nor a mis-

match. The bondLevel remains unchanged.

24

• A Field pair for which a mis-match in either of the two cross-wise namespace comparisons is detected is dis-

carded from the possible pairs. It is not further considered.

In practice then, a component that targets a specific other component with its advertised Fields would add a secondary

namespace to its import or export State, and set that namespace to the compLabel of the targeted component. This

increases the bondLevel for each pair from 1 to 2. An even higher bondLevel of 3 is achieved when both sides target

each other by specifying the other component’s compLabel through a secondary namespace.

In conclusion, namespaces can affect the bondLevel calculation for each pair, but they do not affect how pairs are

constructed and disambiguated. In particular, the requirement for unambiguous Field pairs for each consumer Field

remains unchanged, and it is an error condition if the highest bondLevel for a consumer Field does not correspond to

a unique Field pair.

2.4.4 Using Coupling Sets for Coupling Multiple Nests

The NUOPC Layer can couple multiple data sets by adding nested states to the import and export states of a

NUOPC_Model. Each nested state is given a couple set identifier at the time it is added to the parent state. This

identifier guarantees a NUOPC_Connector will only pair fields within this nested state to fields in a connected state

with an identical identifier.

During label_Advertise, before calling NUOPC_Advertise (using methods 3.9.3 or 3.9.4), add nested states

to import and export states using NUOPC_AddNestedState. Each nested state is given a couple set identifier using

the CplSet argument, see 3.9.2. The nested states can then be used to advertise and realize fields. Each nested state

may contain fields with identical standard names or unique standard names. Fields in each nested state will only

connect to fields in another state if that state has an identical couple set identifier.

For a complete example of how to couple sets using the NUOPC API, see https://github.com/esmf-org/nuopc-app-

prototypes/tree/develop/AtmOcnCplSetProto. The following code snippets demonstrates the critical pieces of code

used to add a nested state with a couple set identifier.

subroutine Advertise(model, rc)

type(ESMF_GridComp) :: model

integer, intent(out) :: rc

! local variables

type(ESMF_State) :: importState, exportState

type(ESMF_State) :: NStateImp1, NStateImp2

type(ESMF_State) :: NStateExp1, NStateExp2

rc = ESMF_SUCCESS

! query model for importState and exportState

call NUOPC_ModelGet(model, importState=importState, &

exportState=exportState, rc=rc)

! check rc

! add nested import states with couple set identifier

call NUOPC_AddNestedState(importState, &

CplSet="Nest1", nestedStateName="NestedStateImp_N1", &

nestedState=NStateImp1, rc=rc)

! check rc

25

call NUOPC_AddNestedState(importState, &

CplSet="Nest2", nestedStateName="NestedStateImp_N2", &

nestedState=NStateImp2, rc=rc)

! check rc

! add nested export states with couple set identifier

call NUOPC_AddNestedState(exportState, &

CplSet="Nest1", nestedStateName="NestedStateExp_N1", &

nestedState=NStateExp1, rc=rc)

! check rc

call NUOPC_AddNestedState(exportState, &

CplSet="Nest2", nestedStateName="NestedStateExp_N2", &

nestedState=NStateExp2, rc=rc)

! check rc

! importable field: sea_surface_temperature

call NUOPC_Advertise(NStateImp1, &

StandardName="sea_surface_temperature", name="sst", rc=rc)

! check rc

call NUOPC_Advertise(NStateImp2, &

StandardName="sea_surface_temperature", name="sst", rc=rc)

! check rc

! exportable field: air_pressure_at_sea_level

call NUOPC_Advertise(NStateExp1, &

StandardName="air_pressure_at_sea_level", name="pmsl", rc=rc)

! check rc

call NUOPC_Advertise(NStateExp2, &

StandardName="air_pressure_at_sea_level", name="pmsl", rc=rc)

! check rc

! exportable field: surface_net_downward_shortwave_flux

call NUOPC_Advertise(NStateExp1, &

StandardName="surface_net_downward_shortwave_flux", name="rsns", rc=rc)

! check rc

call NUOPC_Advertise(NStateExp2, &

StandardName="surface_net_downward_shortwave_flux", name="rsns", rc=rc)

! check rc

end subroutine

2.4.5 Connection Options

Once the field pairing discussed in the previous sections is completed, each Connector component holds an attribute by

the name of CplList. The CplList is a list type attribute with as many entries as there are fields for which the Con-

nector component is responsible for connecting. The first part of each of these entries is always the StandardName

of the associated field. See section 2.2 for a discussion of the NUOPC field dictionary and standard names.

After the StandardName part, each CplList entry may optionally contain a string of connection options. Each

Driver component has the chance as part of the label_ModifyInitializePhaseMap specialization, to modify

26

the CplList attribute of all the Connectors that it drives.

The individual connection options are colon separated, leading to the following format for each CplList entry:

StandardName[:option1[:option2[: ...]]

The format of the options is:

OptionName=value1[=spec1][,value2[=spec2][, ...]]

OptionName and the value strings are case insensitive. There are single and multi-valued options as indicated in the

table below. For single valued options only value1 is relevant. If the same option is listed multiple times, only the

first occurrence will be used. If an option has a default value, it is indicated in the table. If a value requires additional

specification via =spec then the specifications are listed in the table.

OptionName Definition Type Values

dstMaskValues List of integer values that defines

the mask values.

multi List of integers.

dumpWeights Enable or disable dumping of the

interpolation weights into a file.

single true, false(default)

extrapDistExponent The exponent to raise the dis-

tance to when calculating weights

for the nearest_idavg extrapolation

method.

single real(default 2.0)

extrapMethod Fill in points not mapped by the re-

grid method.

single none(default),

nearest_idavg,

nearest_stod,

nearest_d, creep,

creep_nrst_d

extrapNumLevels The number of levels to output for

the extrapolation methods that fill

levels. When a method is used that

requires this, then an error will be

returned, if it is not specified.

single integer

extrapNumSrcPnts The number of source points to use

for the extrapolation methods that

use more than one source point.

single integer(default 8)

ignoreDegenerate Ignore degenerate cells when

checking the input Grids or Meshes

for errors.

single true, false(default)

ignoreUnmatchedIndices Ignore unmatched sequence indices

when redistributing between source

and destination index space.

single true, false(default)

pipelineDepth Maximum number of outstanding

non-blocking communication calls

during the parallel interpolation.

Only relevant for cases where the

automatic tuning procedure fails to

find a setting that works well on a

given hardware.

single integer

27

poleMethod Extrapolation method around the

pole(s).

single none(default),

allavg,

npntavg="integer

indicating number of

points", teeth

remapMethod Redistribution or interpolation to

compute the regridding weights.

single redist,

bilinear(default),

patch,

nearest_stod,

nearest_dtos,

conserve,

conserve_2nd

srcMaskValues List of integer values that defines

the mask values.

multi List of integers.

srcTermProcessing Number of terms in each partial

sum of the interpolation to process

on the source side. This setting im-

pacts the bit-for-bit reproducibility

of the parallel interpolation results

between runs. The strictest bit-for-

bit setting is achieved by setting the

value to 1.

single integer

termOrder Order of the terms in each par-

tial sum of the interpolation. This

setting impacts the bit-for-bit re-

producibility of the parallel in-

terpolation results between runs.

The strictest bit-for-bit setting is

achieved by setting the value to

srcseq.

single free(default),

srcseq, srcpet

unmappedAction The action to take when unmapped

destination elements are encoun-

tered.

single ignore(default),

error

zeroRegion The region of destination elements

set to zero before adding the result

of the sparse matrix multiplication.

The available options support total,

selective, or no zeroing of destina-

tion elements.

single total(default),

select, empty

2.4.6 Data-Dependencies during Initialize

For multi-model applications it is not uncommon that during start-up one or more components depends on data from

one or more other components. These types of data-dependencies during initialize can become very complex very

quickly. Finding the "correct" sequence to initialize all components for a complex dependency graph is not trivial. The

NUOPC Layer deals with this issue by repeatedly looping over all components that indicate that their initialization

has data dependencies on other components. The loop is finally exited when either all components have indicated

completion of their initialization, or a dead-lock situation is being detected by the NUOPC Layer.

28

The data-dependency resolution loop considers all components that have specialized label_DataInitialize.

Participating components communicate their current status to the NUOPC Layer via Field and Component metadata.

Every time a component’s label_DataInitialize specialization routine is called, it is responsible for checking

the Fields in the importState and for initializing any internal data structures and Fields in the exportState. Fields that

are fully initialized in the exportState must be indicated by setting their Updated Attribute to "true". This is used by

the NUOPC Layer to ensure that there is continued progress during the resolution loop iterations. Once the component

is fully initialized it must further set its InitializeDataComplete Attribute to "true" before returning.

During the execution of the data-dependency resolution loop the NUOPC Layer calls all of the Connectors to a

Model/Mediator component before calling the component’s label_DataInitialize. Doing so ensures that

all the currently available Fields are passed to the component before it tries to access them. Once a component has set

its InitializeDataComplete Attribute to "true", it, and the Connectors to it, will no longer be called during the

remainder of the resolution loop.

When all of the components that participate in the data-dependency resolution loop have set their

InitializeDataComplete Attribute to "true", the NUOPC Layer successfully exits the data-dependency res-

olution loop. The loop is also interrupted before all InitializeDataComplete Attributes are set to "true" if a

full cycle completes without any indicated progress. The NUOPC Layer flags this situation as a potential dead-lock

and returns with error.

2.4.7 Transfer of Grid/Mesh/LocStream Objects between Components

There are modeling scenarios where the need arises to transfer physical grid information from one component to

another. One common situation is that of modeling systems that utilize Mediator components to implement the inter-

actions between Model components. In these cases the Mediator often carries out computations on a Model’s native

grid and performs regridding to the grid of other Model components. It is both cumbersome and error prone to recre-

ate the Model grid in the Mediator. To solve this problem, NUOPC implements a transfer protocol for ESMF_Grid,

ESMF_Mesh, and ESMF_LocStream objects (generally referred to as GeomObjects) between Model and/or Medi-

ator components during initialization.

The NUOPC Layer transfer protocol for GeomObjects is based on two Field attributes:

TransferOfferGeomObject and TransferActionGeomObject. The TransferOfferGeomObject

attribute is used by the Model and/or Mediator components to indicate for each Field their intent for the associated

GeomObject. The predefined values of this attribute are: "will provide", "can provide", and "cannot provide". The

TransferOfferGeomObject attribute must be set during label_Advertise.

The generic Connector uses the intents from both sides and constructs a response according to the table be-

low. The Connector’s response is available during label_RealizeProvided. It sets the value of the

TransferActionGeomObject attribute to either "provide" or "accept" on each Field. Fields indicating

TransferActionGeomObject equal to "provide" must be realized on a Grid, Mesh, or LocStream object in

the Model/Mediator before returning from label_RealizeProvided.

Fields that hold "accept" for the value of the TransferActionGeomObject attribute require two additional

negotiation steps. During label_AcceptTransfer the Model/Mediator component can access the transferred

Grid/Mesh/LocStream on the Fields that have the "accept" value. However, only the DistGrid, i.e. the decomposition

and distribution information of the Grid/Mesh/LocStream is available at this stage, not the full physical grid informa-

tion such as the coordinates. At this stage the Model/Mediator may modify this information by replacing the DistGrid

object in the Grid/Mesh/LocStream. The DistGrid that is set on the Grid/Mesh/LocStream objects when leaving the

Model/Mediator phase label_AcceptTransfer will consequently be used by the generic Connector to fully

transfer the Grid/Mesh/LocStream object. The fully transferred objects are available on the Fields with "accept" dur-

ing Model/Mediator phase label_RealizeAccepted, where they are used to realize the respective Field objects.

At this point all Field objects are fully realized and the initialization process can proceed as usual.

29

The following table shows how the generic Connector sets the TransferActionGeomObject attribute on the

Fields according to the incoming value of TransferOfferGeomObject.

TransferOfferGeomObject

Incoming side A

TransferOfferGeomObject

Incoming side B

Outgoing setting by generic Connector

"will provide" "will provide" A:TransferActionGeomObject="provide"

B:TransferActionGeomObject="provide"

"will provide" "can provide" A:TransferActionGeomObject="provide"

B:TransferActionGeomObject="accept"

"will provide" "cannot provide" A:TransferActionGeomObject="provide"

B:TransferActionGeomObject="accept"

"can provide" "will provide" A:TransferActionGeomObject="accept"

B:TransferActionGeomObject="provide"

"can provide" "can provide" if (A is import side) then

A:TransferActionGeomObject="provide"

B:TransferActionGeomObject="accept"

if (B is import side) then

A:TransferActionGeomObject="accept"

B:TransferActionGeomObject="provide"

"can provide" "cannot provide" A:TransferActionGeomObject="provide"

B:TransferActionGeomObject="accept"

"cannot provide" "will provide" A:TransferActionGeomObject="accept"

B:TransferActionGeomObject="provide"

"cannot provide" "can provide" A:TransferActionGeomObject="accept"

B:TransferActionGeomObject="provide"

"cannot provide" "cannot provide" Flagged as error!

2.4.8 Field and Grid/Mesh/LocStream Reference Sharing

For coupling scenarios with a very high coupling frequency, or for situations where large data volumes are exchanged

(e.g. 3D volumetric fields), it can be necessary for fields and geom objects (Grid, Mesh, and LocStreams) to share

their data via references. Reference sharing greatly reduces the coupling cost compared to local or remote copies.

In the current implementation, in order for NUOPC components to be coupled via reference sharing, they must only

have data defined (i.e. have DEs) on PETs that are part of both components. Further, the distribution of data across

the PETs must be identical for both components. If these conditions are met, and both sides of the connection indicate

that they are willing to participate in reference sharing, the NUOPC Connector will handle technical details. The

Connector will provide fields to the components that reference the exact same data allocations in memory. Notice

however that once reference sharing is active, the NUOPC Layer cannot protect against components violating the data

access conventions. Specifically fields in the importState are not to be modified by the component. Reference sharing

requires a higher level of "trust" between the components. NUOPC therefore requires that both sides of a connection

agree to reference sharing.

A component uses the SharePolicyField and SharePolicyGeomObject attributes on each field to indicate

whether it is willing to reference share the data of a field, and/or the geom object on which the field is built. A setting

of share indicates a component’s willingness to share, while not share indicates the opposite. The share policy

attributes are automatically set when a field is advertised via the NUOPC_Advertise() method. By default this

method sets both share policies to not share.

When a Connector negotiates the connections between two components, it first considers the transfer

offer attributes (i.e. TransferOfferGeomObject) on both sides for each field to determine the

30

TransferActionGeomObject attribute for both side. The details of this protocol are outline in section 2.4.7.

There are two cases to consider for each field that are relevant for reference sharing:

The simple case is where the Connector determines that for a specific field both sides must provide the field and geom

object. This is indicated by TransferActionGeomObject being set to provide on both sides. For this case

the ShareStatusField and ShareStatusGeomObject attributes are automatically set to not shared for

all the fields, preventing any reference sharing.

The more interesting case is where one side of the connection receives the TransferActionGeomObject on a

field set to provide, while the other side receives accept. In this case, the next step is for the Connector to take the

SharePolicyField and SharePolicyGeomObject attributes on both sides into consideration. For each of

the two attributes separately, if one side indicates not share, both sides will receive the associated ShareStatus set to

not shared. However, if both sides of the connection indicate a SharePolicy of share, the Connector must further

inspect the petLists to see if reference sharing is possible for the specific field. Under the current implementation a

field is sharable with another component if all the PETs on which the field holds DEs are also in the other component’s

petList. If this condition is not met for the specific field, then the associated ShareStatus is set to not shared.

Otherwise the ShareStatus is set to shared

During later phases of the Initialization protocol the Connector performs different operations, depending on how the

TransferActionGeomObject, ShareStatusField, and ShareStatusGeomObject attributes were set

as per the above protocol:

• For a field that has ShareStatusGeomObject equal to share, the geom object provided by the provider

component will be made available to the acceptor component.

• For a field that has ShareStatusField equal to share, the Connector realizes the field for the acceptor

component using the data allocation reference provided by the field of the provider component.

2.4.9 Field Mirroring

In some cases it is useful for a NUOPC component to match the set of fields advertised by another component, e.g.

in order to connect to every field. NUOPC provides the concept of field mirroring that allows automatic matching

by "mirroring" the fields of another component in their import- or exportState into their own States. One purpose of

this is to automatically resolve the import data dependencies of a component, by setting up a component that exactly

provides all of the needed fields.

The field mirror capability is also useful with NUOPC Mediators since these components often exactly reflect, in

separate States, the sets of fields of each of the connected components. The field mirroring capability, therefore, can

be used to ensure that a Mediator is always capable of accepting fields from connected components, and removes the

need to specify field lists in multiple places, i.e., both within a set of Model components connected to a Mediator and

within the Mediator itself.

To access the field mirror capability, a component sets the FieldTransferPolicy attribute during

label_Advertise. The attribute is set on the Import- and/or Export- States to trigger field mirroring for each

state, respectively. The default value of "transferNone" indicates that no fields should be mirrored. The other available

options are "transferAll" and "transferAllWithNamespace". Both options mirror transfer all of the fields from all of

the connected States into the State that carries the attribute. The "transferAll" option results in flat structure with all of

the mirrored fields added directly to the acceptor State. A flat structure like this is typically the preferred situation for

an ExportState, where the same fields might be connected to multiple consumer components. The "transferAllWith-

Namespace" option also mirrors all of the field from the connected State, but creates separate Namespaces for each

connection, placing the associated mirrored fields into the respective nested State. A nested structure like this useful

for an ImportState where connections are being made with multiple producer components. In this case the consumer

31

component can query the "Namespace" attribute of each nested State to infer the component label of the associated

producer components.

Each Connector considers the FieldTransferPolicy attribute on both its import and export States. Each State

that has the FieldTransferPolicy attribute set to "transferAll" or "transferAllWithNamespace", will have then

fields of the respecive other State mirror transferred. If both States have the FieldTransferPolicy attribute set

to trigger the mirror transfer, then fields are mirrored in both directions (i.e. import to export and export to import).

The transfer process works as follows: First, the TransferOfferGoemObject attribute is reversed between the

providing side and accepting side. This is because if a field from the providing component is to be mirrored and it

can provide its own geometric object, then the mirrored field on the accepting side should be set to accept a geometric

object. The mirrored field is advertised in the accepting State using a call to NUOPC_Advertise() such that the

mirrored field shares the same StandardName.

Components have the opportunity to modify or remove any of the mirrored Fields in their Import/ExportState by

using the label_ModifyAdvertised specialization point. After this point the initialization sequence continues

as usual. Since the mirrored fields have been advertised with matching StandardName attribute, the field pairing

algorithm now matches them in the usual manner, thereby establishing a connection between the original and the

mirrored fields.

2.5 Timekeeping

The NUOPC Layer associates an internal clock with three of its four generic component kinds: NUOPC_Driver,

NUOPC_Model, and NUOPC_Mediator. The NUOPC_Connector is the only NUOPC component kind that does

not have an internal clock object that is managed by NUOPC.

The component internal clocks are implemented as ESMF_Clock objects. The interaction beween these clock objects

between a parent component (driver) and its child components (models, mediators, and drivers) is defined by the

NUOPC timekeeping behavior described below.

For a simple run sequence with only a single coupling time-step, the driver clock sets the startTime, stopTime,

and timeStep to be the beginning, the end, and the coupling period of the run, respectively. At the beginning of

executing the run sequence, the driver clock currTime is set to its startTime. As the driver component executes

the run sequence, it passes its clock to each child component that it executes. At the end of each full sweep through

the run sequence the driver currTime is incremented by timeStep (i.e. the coupling period). This continues until

the driver clock stopTime has been reached, and the run is complete.

When a child component is being called during the execution of the driver run sequence, it receives the driver/parent

clock. This access is read-only, and the child component is only allowed to inspect but not modify the parent clock.

The child component is expected to run forward a single coupling period, i.e. one timeStep on the parent clock.

Specifically this means that the currTime on the child clock must match the currTime on the parent clock. It then

must take a single timeStep of the parent clock forward, using its own clock to do so. The child component can

implement this forward step by taking multiple smaller advances on its own clock.

The generic NUOPC component implementation provides the following assistance to implement the above described

behavior:

• During initialization of a component, its clock is set as a copy of its parent clock. Specifically the settings for

startTime, stopTime, timeStep, and currTime are propagated. Alarms are not propagated.

• A component can customize aspects of its clock during initialization by using the label_SetClock special-

ization point.

32

• During run time, the default label_SetRunClock specialization checks that the currTime matches

between child and parent clock. It further checks that the child clock can reach the parent’s

currTime+timeStep, i.e. the next coupling time, by an integral number of it’s own time steps. If so,

the stopTime on the child clock is set to the parent’s currTime+timeStep.

– It can be useful to customize label_SetRunClock, e.g. if the parent uses dynamic coupling periods,

or in case of a run sequence with multiple coupling periods. In these cases the component must react to

the parent timeStep provided during execution of the run sequence. In general the currTime match

should be implemented, followed by setting the child’s timeStep according to the information provided

on the parent clock. Finally the the stopTime on the child clock should be set as to return at the next

coupling time determined by the parent clock.

• Once past the label_SetRunClock specialization, the component checks the timestamps on the fields in

the import state. This is done by calling into the label_CheckImport specialization point. The default

implementation simply checks that all import fields are at currTime of the child clock.

– In more complex situations, where the interaction between different components happens with different

coupling periods, it can be necessary to specialialize the label_CheckImport of a component. For

example, a component might receive fields in its import state that carry different timestamps. Conse-

quentely, label_CheckImport must implement a more complex relationship between the compo-

nent’s currTime, and the timestamps on each import field.

• Finally the component clock is stepped forward from currTime to stopTime, using the timeStep interval

set in the child clock. During this loop, the label_Advance specialization is called for each time step. The

label_Advance specialization is responsible for any accumulating and averaging that may be necessary.

– In practice often the timeStep on the child clock is chosen to be identical to that of the parent clock.

This way the label_Advance specialization is only called once for every coupling period. In this

approach the details about potentially smaller model time steps, and associated accumulation and averaging

is handled below the NUOPC cap layer of a model.

• After the stopTime has been reached on the child clock, the label_TimestampExport specialization

point is called before the component returns to the parent. The default implementation simply timestamps all

the fields in the export state with the currTime of of the child clock.

2.6 Component Hierarchies

The NUOPC Layer supports component hierarchies. The key function to support this capability is the ability for

a generic NUOPC_Driver to add another NUOPC_Driver component as a child, and to drive it much like a

NUOPC_Model component. The interactions upward and downward the hierarchy tree are governed by the stan-

dard NUOPC component interaction protocols.

In the current implementation, data-dependencies during initialization can be resolved throughout the entire compo-

nent hierarchy. The implementation is based on a sweep algorithm that continues up and down the hierarchy until

either all data-dependencies have been resolved, or a dead-lock situation has been detected and flagged.

Along the downward direction, the interaction of a driver with its children allows the driver to mirror its child com-

ponents’ fields, and to transfer or share geom objects and fields up the component hierarchy. All of the interactions

of a driver with its child components are handled by explicit NUOPC_Connector instances. These instances are

automatically added by the driver when needed.

The detailed behavior of a NUOPC_Driver component within a component hierarchy depends on the setting of

the HierarchyProtocol attribute on the driver component itself. Section 2.3.1 lists all of the driver attributes

33

defined by NUOPC. By default the HierarchyProtocol attribute is unset. For unset HierarchyProtocol or

when set to PushUpAllExportsAndUnsatisfiedImports, the driver component pushes all the fields from

its children exportStates into its own exportState, and all unsatisfied fields in its children importStates into its own

importState. This is done using the standard Field Mirroring protocol discussed under 2.4.9. Further the driver sets

the SharePolicyGeomObject, and SharePolicyField to share for all the fields it mirrors. This triggers

the reference share protocol as described in section 2.4.8.

When the HierarchyProtocol is set to Explorer, the driver component still mirrors the fields from its child

components’ import- and exportStates, as was done for the default, however, the share policies will not be set. This

protocol option is used by the NUOPC ComponentExplorer to connect to user provided components.

Finally, for a setting of HierarchyProtocol to ConnectProvidedFields, the driver does not modify its

own import- and exportState. Instead connections are made only between fields that have been added to the driver

states externally. This is useful for the situation where a NUOPC_Driver component is called directly via ESMF

component method from a level that is outside of NUOPC. In this situation, field and/or geom object sharing must be

activated explicitly if desired.

2.7 Resource Control and Threaded Components

Each instance of a NUOPC component within an application is defined on a fixed set of compute resources. The associ-

ation of resources occurs when the component is added to its parent component via the NUOPC_DriverAddComp()

call. Subsequently when any of the component’s Initialize, Run, or Finalize phases is called, the component code ex-

ecutes on the associated resources.

The primary control of resource management under NUOPC is implemented through the petList argument that is

accepted by NUOPC_DriverAddComp(). This argument holds a list of Persistent Execution Thread (PET) ids of

the parent component on which the child component is to execute. By default, i.e. when petList is not specified,

all of the parent PETs are associated with the added child component. Using custom petList constructions, a driver

has control of exactly how its child components are sharing the available PET resources.

Notice that the order of PETs listed in a petList is significant. The local PET labeling inside a child component

always goes from 0 to size(petList)-1. The order in which the child PETs correspond to the parent PETs is that

specified by the petList. It is erroneous to list the same parent PET multiple times in the same petList argument.

For the following discussion it is convenient to think of PETs as simple MPI processes. While this is not strictly

correct on a technically ESMF level, there are currently no features available to NUOPC where this interpretation

would lead to inconsistencies. One of the key consequences of equating each PET to a simple MPI process is that

each PET can only execute a single component’s code at any given time. Therefore, in order to allow components to

execute concurrently, a necessary condition is to define them on exclusive petLists. Of course the data dependencies

between components must also support concurrent execution. Often this requires careful placement of Connectors in

the run sequence and the introduction of time lags. However, this is more of a scientific than the resource control

question covered in this section.

Many model components today implement the hybrid MPI+OpenMP paradigm to support scalability to larger core

counts than would be possible in a purely MPI or OpenMP approach. NUOPC supports hybrid MPI+OpenMP com-

ponents in two ways: NUOPC aware and NUOPC unaware. In the NUOPC unaware approach, the application is

launched only on those MPI ranks that are going to participate in the hybrid execution with OpenMP. Usually this

means that the MPI launch system (mpirun, mpiexec, aprun, srun, etc.), and a set of environment variables get in-

volved in correctly associating the desired number of hardware cores with each MPI process, and to assure correct

affinities. In this approach NUOPC is not at all involved in the resource management, and OpenMP threading happens

purely on the user level.

The NUOPC unaware hybrid MPI+OpenMP approach provides a quick way to run hybrid applications that consist of

34

a single model component, or where all of the model components use the same hybrid approach with the same ratio

of OpenMP threads per MPI rank. In this case, shell-based user level resource control is often sufficient. However,

for more complex coupling scenarios the NUOPC aware hybrid approach provides additional levels of control that are

often needed to achieve optimal utilization of the available resources

Under the NUOPC aware resource control, some components might be purely MPI based, while others use the hybrid

approach. Different hybrid components can be configured to run with different threading levels. This is possible

independent on whether the components use the same or exclusive sets of resources.

Besides the already discussed petList argument, there are two additional optional arguments to

NUOPC_DriverAddComp(). It is through those arguments that the advanced resource control features under

NUOPC are implemented. One of these arguments is compSetVMRoutine. This argument allows the user

to point to a specific public method of the child component. The signature of this method is the same as for

the compSetServicesRoutine argument. If compSetVMRoutine is provided, it will be called before

compSetServicesRoutine. The purpose of compSetVMRoutine is to allow the child component to set

specific aspects of its own ESMF virtual machine (VM) before instantiating it. The ESMF reference manual dis-

cusses the details of this procedure under the "User-code SetVM method" section. Based on the information provided

there, a user could implement a custom compSetVMRoutine method for a component. However, for convenience,

NUOPC provides a generic implementation that can be passed into compSetVMRoutine. For most common sit-

uation, the generic implementation provided by NUOPC is sufficient, and there is no need for the user to provide a

custom implementation of compSetVMRoutine.

Utilizing the generic SetVM method provided by NUOPC involves a few steps. First, the component implementation

must make the generic SetVM public inside its own cap module:

module MODEL

!---

! MODEL Component.

!---

use ESMF

use NUOPC

use NUOPC_Model, &

modelSS => SetServices

implicit none

private

public SetVM, SetServices ! Here making SetVM and SetServices public.

!---

contains

!---

...

end module

Second, the driver component that adds MODEL via NUOPC_DriverAddComp() as a child component, must make

a USE association to the SetVM:

module driver

35

!---

! Code that specializes generic NUOPC_Driver

!---

use MPI

use ESMF

use NUOPC

use NUOPC_Driver, &

driverSS => SetServices

use MODEL, only: &

modelSS => SetServices, &

modelSVM => SetVM ! Here making USE association to SetVM.

implicit none

private

public SetServices

!---

contains

!---

...

end module

Third, the driver can now pass the modelSVM into NUOPC_DriverAddComp() via the compSetVMRoutine

argument, essentially providing the generic SetVM method.

Finally, the generic SetVM implementation needs to be informed about the specific resource control request. This is

handled through the other optional argument to NUOPC_DriverAddComp() alluded to earlier. This is the info

argument.

The info argument is of type(ESMF_Info), which implements a structured key/value pair class. An info object

must first be created via ESMF_InfoCreate() before any key/value pairs can be set.

type(ESMF_Info) :: info

...

info = ESMF_InfoCreate(rc=rc)

! check rc

NUOPC resource control is implemented under the /NUOPC/Hint/PePerPet structure. The following table doc-

uments the available keys under this structure, the supported values, and their meaning. Notice that structure and keys

are case sensitive, while values are case insensitive.

key value Meaning

36

MaxCount Positive integer The maximum number of Processing Elements (PEs), i.e.

cores or hardware threads, associated with each child PET.

The procedure is this: the PEs associated with the incom-

ing parent PETs (e.g. via petList), are grouped by single

system image (SSI), i.e. shared memory domain or hard-

ware node. Within each SSI the PEs are divided by the

MaxCount to determine how many child PETs are needed

for each SSI. The PEs on each SSI are then associated with

the child PETs.

Note that this procedure only then results in every child

PET holding exactly MaxCount PEs when the number of

PEs per SSI brought in by the parent PETs is a multiple of

MaxCount.

Parent PETs that for the child VM gave up their PEs, and

are not executing as child PETs, are paused for the duration

of the child component execution. They resume execution

under the parent VM once the child component returns con-

trol to the parent.

OpenMpHandling String: none, set, init,

or pin (the default)

For "none", OpenMP handling is completely left to the

user. In this case the user child component code will typ-

ically want to query the child VM for the local number

of PEs under each child PET. This number then would be

used in an explicit call to omp_set_num_threads()

in order to set the OpenMP thread number according to the

available PEs under each child PET.

For "set", the NUOPC/ESMF layer make the call to

omp_set_num_threads() under each child PET with

the appropriate number of PEs.

For "init", the NUOPC/ESMF layers sets the number of

OpenMP threads in each team, and triggers the instantia-

tion of all the threads in the team.

For "pin", the NUOPC/ESMF layers sets the number of

OpenMP threads in each team, triggers the instantiation of

the team, and pins each OpenMP thread to the correspond-

ing PE.

OpenMpNumThreads Positive integer By default the "set", "init", or "pin" option under

OpenMpHandling sets the number of OpenMP threads

in each team equal to the number of PEs under each PET.

Setting OpenMpNumThreads, this default can be over-

written. The option allows the user to under- or oversub-

scribe the PEs held by each PET.

ForceChildPthreads Logical: .true., or

.false. (the default)

By default (.false.) each PET executes under the same

thread as its parent PET. Typically this means that PETs

execute directly as the MPI process under which they were

created. In some cases it is beneficial to create a separate

Pthread for each child PET. This can be accomplished by

setting the value to .true..

37

PthreadMinStackSize Positive integer The minimum stack size in byte of each child PET that

is executing as Pthread. By default child PETs do not

execute as Pthreads. Therefore the stack size by de-

fault is equal to that of the parent PET. However, if

ForceChildPthreads is set to true, all child PETs

are instantiated as Pthreads. This means that the stack

size cannot be unlimited. ESMF implements a default

minimum stack size for child PETs of 20MiB. This min-

imum default can be changed (up or down) via the

PthreadMinStackSize key.

The system limit or ulimit commands can be

used to further increase the stack size of child PETs.

Any limit set lower than the PthreadMinStackSize,

or set to unlimited, will result in usage of the

PthreadMinStackSize if set, or the 20MiB default.

Note further that when OpenMP is used inside the

child component, each child PET becomes the root

thread of each of the OpenMP thread teams. It is

therefore the root thread stack size that is affected by

PthreadMinStackSize. The stack size of all the other

OpenMP threads in each team is set via environment vari-

able OMP_STACKSIZE as usual.

The following code snippet demonstrates a typical resource control request using the generic SetVM routine and an

info object. This request is suitable for a hybrid MPI+OpenMP component where every child PET is expected to

run 4-way OpenMP threaded.

call ESMF_InfoSet(info, key="/NUOPC/Hint/PePerPet/MaxCount", value=4, rc=rc)

! check rc

call NUOPC_DriverAddComp(driver, "MODEL1", modelSS, modelSVM, info=info, rc=rc)

! check rc

A second child component can be created that uses the same parent resources as the first, but sets up 8-way OpenMP

threading under each child PET.

call ESMF_InfoSet(info, key="/NUOPC/Hint/PePerPet/MaxCount", value=8, rc=rc)

! check rc

call NUOPC_DriverAddComp(driver, "MODEL2", modelSS, modelSVM, info=info, rc=rc)

! check rc

If the default settings for some of the keys are not appropriate, they can be set explicitly. Here for instance a child

component with the same number of PETs as the previous 4-way OpenMP threaded case is created, but is instructed

to not handle any of the OpenMP aspects.

call ESMF_InfoSet(info, key="/NUOPC/Hint/PePerPet/MaxCount", value=4, rc=rc)

! check rc

call ESMF_InfoSet(info, key="/NUOPC/Hint/PePerPet/OpenMpHandling", &

value="none", rc=rc)

38

! check rc

call NUOPC_DriverAddComp(driver, "MODEL3", modelSS, modelSVM, info=info, rc=rc)

! check rc

In this example, all three child components "MODEL1", "MODEL2", and "MODEL3" use the exact same parent

resources. Due to this fact all three components can only execute sequentially. However, each child component

manages the resources provided by the parent differently, and independently. Through this tailored approach, NUOPC

allows optimal use of the available resources by each component. NUOPC_Connector components defined between

components work as usual, taking care of all the required data movements automatically and completely transparent

to the user.

In order to obtain best performance when using NUOPC aware resource control for hybrid parallelism, it is strongly

recommended to set OMP_WAIT_POLICY=PASSIVE in the environment. This is one of the standard OpenMP

environment variables. The PASSIVE setting ensures that OpenMP threads relinquish the hardware threads (i.e.

cores) as soon as they have completed their work. Without that setting ESMF resource control threads can be delayed,

and context switching between components becomes more expensive.

2.8 External NUOPC Interface

Complete applications can easily be built by assembling NUOPC compliant components. Many such NUOPC appli-

cations are in productive use across several institutions. The top level of such applications is typically implemented

via a very thin application layer holding the main program that calls into the top level driver component that derives

from NUOPC_Driver. Model components sit under the top level driver, interacting with one another and the driver

through the NUOPC protocols. Complex systems have one or more component hierarchy levels under the top level

driver as discussed in the previous section.

There are situation, however, where a NUOPC application needs to be controlled by an outside component. Such an

outside component does not derive from any of the generic NUOPC components, and cannot be expected to implement

the complete NUOPC protocol. Typically such an external component implements its own control structure outside

of NUOPC and ESMF. One example of such a situation are data assimilation systems that want to drive a NUOPC

forecast application.

In order to facilitate the external access into a NUOPC application, the NUOPC_Driver provides an external inter-

face. This interface is implemented through the standard ESMF component methods: Initialize, Run, and Finalize.

This interface with the top level NUOPC driver allows an external component to control and interact with the entire

NUOPC application.

The standard ESMF component interfaces hold importState, exportState, and a clock argument. These

arguments are used to pass data in and out of the NUOPC application, and control the time stepping of the NUOPC

model, respectively. The top level driver of a NUOPC application has access to any field that is advertised by any of

the components and therefore serves as a single point of access for the entire application.

The external NUOPC interface is currently defined by the Initialize, Run, and Finalize phases documented in the

following table.

methodFlag phaseLabel Meaning

ESMF_METHOD_INITIALIZE label_ExternalAdvertise Called after the external component has set up the import-

and exportStates with fields (advertised) that it plans to in-

teract with. On the NUOPC application side this call will

got through the complete advertise cylce.

39

ESMF_METHOD_INITIALIZE label_ExternalRealize Called after the external component has been informed

about the connected status of the fields in the import- and

exportState. On the NUOPC application side this call will

finish setting up RouteHandles between all components in-

volved.

ESMF_METHOD_INITIALIZE label_ExternalDataInit Trigger a complete data initialize throughout the NUOPC

application. The expectation is that all components reset

their data consistent with the clock argument.

ESMF_METHOD_RUN The default Run() method steps the NUOPC application

forward in time according to the clock argument.

ESMF_METHOD_FINALIZE label_ExternalReset Inform the NUOPC application about a clock reset.

ESMF_METHOD_FINALIZE Completely finalize and shut down the NUOPC applica-

tion.

Here methodFlag and phaseLabel corrsepond to the respective arguments of method

NUOPC_CompSearchPhaseMap(). This method is used to determine the actual ESMF phase index needed when

calling into ESMF_GridCompInitialize(), ESMF_GridCompRun(), or ESMF_GridCompFinalize().

In cases where no phaseLabel is indicated, the default phase is used for the implementation, accessible by not

specifying the argument.

For a complete example of how the External NUOPC API is used in practice, see

https://github.com/esmf-org/nuopc-app-prototypes/tree/develop/ExternalDriverAPIProto.

The following code snippets demonstrates the critical pieces of code from the external layer interacting with

NUOPC/ESMF.

! Create the external level import/export States

! NOTE: The "stateintent" must be specified, and it must be set from the

! perspective of the external level:

! -> state holding fields exported by the external level to the ESM component

externalExportState = ESMF_StateCreate(stateintent=ESMF_STATEINTENT_EXPORT, rc=rc)

! check rc

! -> state holding fields imported by the external level from the ESM component

externalImportState = ESMF_StateCreate(stateintent=ESMF_STATEINTENT_IMPORT, rc=rc)

! check rc

! Advertise field(s) in external import state to receive from the NUOPC layer

call NUOPC_Advertise(externalImportState, &

StandardNames=(/"sea_surface_temperature"/), &

TransferOfferGeomObject="cannot provide", SharePolicyField="share", rc=rc)

! check rc

! Call "ExternalAdvertise" Initialize for the earth system Component

call NUOPC_CompSearchPhaseMap(nuopcApp, methodflag=ESMF_METHOD_INITIALIZE, &

phaseLabel=label_ExternalAdvertise, phaseIndex=phase, rc=rc)

! check rc

call ESMF_GridCompInitialize(nuopcApp, phase=phase, clock=clock, &

importState=externalExportState, exportState=externalImportState, userRc=urc, rc=rc)

! check rc and urc

! Call "ExternalRealize" Initialize for the earth system Component

40

call NUOPC_CompSearchPhaseMap(nuopcApp, methodflag=ESMF_METHOD_INITIALIZE, &

phaseLabel=label_ExternalRealize, phaseIndex=phase, rc=rc)

! check rc

call ESMF_GridCompInitialize(nuopcApp, phase=phase, clock=clock, &

importState=externalExportState, exportState=externalImportState, userRc=urc, rc=rc)

! check rc and urc

! Call "ExternalDataInit" Initialize for the earth system Component

call NUOPC_CompSearchPhaseMap(nuopcApp, methodflag=ESMF_METHOD_INITIALIZE, &

phaseLabel=label_ExternalDataInit, phaseIndex=phase, rc=rc)

! check rc

call ESMF_GridCompInitialize(nuopcApp, phase=phase, clock=clock, &

importState=externalExportState, exportState=externalImportState, userRc=urc, rc=rc)

! check rc and urc

! Explicit time stepping loop on the external level, here based on ESMF_Clock

do while (.not.ESMF_ClockIsStopTime(clock, rc=rc))

! Run the earth system Component: i.e. step ESM forward by timestep

call ESMF_GridCompRun(nuopcApp, clock=clock, &

importState=externalExportState, exportState=externalImportState, userRc=urc, rc=rc)

! check rc and urc

! Advance the clock

call ESMF_ClockAdvance(clock, rc=rc)

! check rc

end do

! Finalize the earth system Component

call ESMF_GridCompFinalize(nuopcApp, clock=clock, &

importState=externalExportState, exportState=externalImportState, userRc=urc, rc=rc)

! check rc and urc

41

3 API

3.1 Generic Component: NUOPC_Driver

MODULE:

module NUOPC_Driver

DESCRIPTION:

Component that drives and coordinates initialization of its child components: Model, Mediator, and Connector com-
ponents. For every Driver time step the same run sequence, i.e. sequence of Model, Mediator, and Connector Run
methods is called. The run sequence is fully customizable. The default run sequence implements explicit time step-
ping.

SUPER:

ESMF_GridComp

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine SetServices(driver, rc)

type(ESMF_GridComp) :: driver

integer, intent(out) :: rc

SEMANTIC SPECIALIZATION LABELS:

• Initialize:

– label_SetModelServices

∗ Optional. By default driver has no child components.

∗ Use NUOPC_DriverAddComp() repeatedly to add child components to the driver.

∗ Use NUOPC_CompAttributeSet() or NUOPC_CompAttributeIngest() to set attributes
on child components.

∗ Create and set driver clock with startTime, stopTime, and timeStep, if not done by the driver’s parent.

– label_SetRunSequence

∗ Optional. By default drive child components in the sequence they were added.

∗ Define and set a RunSequence either by calling NUOPC_DriverIngestRunSequence(), or
by using the NUOPC_DriverNewRunSequence() and NUOPC_DriverAddRunElement()

API.

– label_ModifyInitializePhaseMap

∗ Optional. By default InitializePhaseMap attributes are not modified.

∗ Modify the InitializePhaseMap attribute on the child components as desired. This is very rarely
needed.

– label_ModifyCplLists

∗ Optional. By default CplList attributes are not modified.

42

∗ Modify the CplList attribute on the child components as desired. This can be useful to set custom
Connection Options for specific Field pairs.

– label_PreChildrenAdvertise

∗ Optional.

∗ Allow driver to execute specific code before calling the Advertise phase of its children.

– label_PostChildrenAdvertise

∗ Optional.

∗ Allow driver to execute specific code after calling the Advertise phase of its children.

– label_PreChildrenRealize

∗ Optional.

∗ Allow driver to execute specific code before calling the Realize phase of its children.

– label_PostChildrenRealize

∗ Optional.

∗ Allow driver to execute specific code after calling the Realize phase of its children.

– label_PreChildrenDataInitialize

∗ Optional.

∗ Allow driver to execute specific code before calling the DataInitialize phase of its children.

– label_PostChildrenDataInitialize

∗ Optional.

∗ Allow driver to execute specific code after calling the DataInitialize phase of its children.

• Run:

– label_SetRunClock

∗ Optional. By default driver clock is left unchanged if the parent component has no valid clock. If there
is a valid parent clock, the current time is checked between it and the driver clock. An error is returned
if the current time does not agree. Otherwise (current time does agree between both clocks), the driver
clock stop time is adjusted to a single time step of the parent clock in the future. This ensures that the
driver returns at the appropriate parent time step, even if that might change dynamically during the
run.

∗ Modify the driver clock before executing RunSequence. This is very rarely needed.

– label_ExecuteRunSequence

∗ Optional. By default use NUOPC generic RunSequence execution.

∗ Implement a custom RunSequence execution. This is very rarely needed.

• Finalize:

– label_Finalize

∗ Optional. By default do nothing.

∗ Destroy any objects created during Initalize.

3.1.1 NUOPC_DriverAddComp - Add a GridComp child to a Driver

INTERFACE:

43

! Private name; call using NUOPC_DriverAddComp()

recursive subroutine NUOPC_DriverAddGridComp(driver, compLabel, &

compSetServicesRoutine, compSetVMRoutine, petList, devList, info, config, &

hconfig, comp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

character(len=*), intent(in) :: compLabel

#if defined (__NVCOMPILER) || defined (__PGI) || defined (ESMF_COMPILER_AOCC)

interface

recursive subroutine compSetServicesRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

interface

recursive subroutine compSetVMRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

optional :: compSetVMRoutine

#else

abstract interface

recursive subroutine SetServicesRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

recursive subroutine SetVMRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

procedure(SetServicesRoutine) :: compSetServicesRoutine

procedure(SetVMRoutine), optional :: compSetVMRoutine

#endif

integer, intent(in), optional :: petList(:)

integer, intent(in), optional :: devList(:)

type(ESMF_Info), intent(in), optional :: info

type(ESMF_Config), intent(in), optional :: config

type(ESMF_HConfig), intent(in), optional :: hconfig

type(ESMF_GridComp), intent(out), optional :: comp

integer, intent(out), optional :: rc

DESCRIPTION:

44

Create and add a GridComp (i.e. Model, Mediator, or Driver) as a child component to a Driver. The component is
created on the provided petList, or by default across all of the Driver PETs.

The specified compSetServicesRoutine() is called back immediately after the new child component has been
created internally. Very little around the component is set up at that time (e.g. NUOPC component attributes are not
yet available at this stage). The routine should therefore be very light weight, with the sole purpose of setting the entry
points of the component – typically by deriving from a generic component followed by the appropriate specilizations.

If provided, the compSetVMRoutine() is called back before the compSetServicesRoutine(). This allows
the child component to set aspects of its own VM, such as threading or the PE distribution among PETs.

The info argument can be used to pass custom attributes to the child component. These attributes are available on
the component when compSetVMRoutine() and compSetServicesRoutine() are called. The attributes
provided in info are copied onto the child component. This allows the same info object to be used for multiple
child components without conflict.

The compLabel must uniquely identify the child component within the context of the Driver component.

If the comp argument is specified, it will reference the newly created component on return.

3.1.2 NUOPC_DriverAddComp - Add a GridComp child from shared object to a Driver

INTERFACE:

! Private name; call using NUOPC_DriverAddComp()

recursive subroutine NUOPC_DriverAddGridCompSO(driver, compLabel, &

sharedObj, petList, devList, info, config, hconfig, comp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

character(len=*), intent(in) :: compLabel

character(len=*), intent(in), optional :: sharedObj

integer, intent(in), optional :: petList(:)

integer, intent(in), optional :: devList(:)

type(ESMF_Info), intent(in), optional :: info

type(ESMF_Config), intent(in), optional :: config

type(ESMF_HConfig), intent(in), optional :: hconfig

type(ESMF_GridComp), intent(out), optional :: comp

integer, intent(out), optional :: rc

DESCRIPTION:

Create and add a GridComp (i.e. Model, Mediator, or Driver) as a child component to a Driver. The component is
created on the provided petList, or by default across all of the Driver PETs.

The SetVM() and SetServices() routines in sharedObj are called back immediately after the new child
component has been created internally. Very little around the component is set up at that time (e.g. NUOPC component
attributes are not yet available at this stage). The routine should therefore be very light weight, with the sole purpose of
setting the entry points of the component – typically by deriving from a generic component followed by the appropriate
specilizations.

The asterisk character (*) is supported as a wildcard for the file name suffix in sharedObj. When present, the
asterisk is replaced by "so", "dylib", and "dll", in this order, and the first successfully loaded object is used. If the

45

sharedObj argument is not provided, the executable itself is searched for the "SetVM" and "SetServices"
symbols.

The info argument can be used to pass custom attributes to the child component. These attributes are available on
the component when compSetVMRoutine() and compSetServicesRoutine() are called. The attributes
provided in info are copied onto the child component. This allows the same info object to be used for multiple
child components without conflict.

The compLabel must uniquely identify the child component within the context of the Driver component.

If the comp argument is specified, it will reference the newly created component on return.

3.1.3 NUOPC_DriverAddComp - Add a CplComp child to a Driver

INTERFACE:

! Private name; call using NUOPC_DriverAddComp()

recursive subroutine NUOPC_DriverAddCplComp(driver, srcCompLabel, &

dstCompLabel, compSetServicesRoutine, compSetVMRoutine, petList, devList, &

info, config, hconfig, comp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

character(len=*), intent(in) :: srcCompLabel

character(len=*), intent(in) :: dstCompLabel

#if defined (__NVCOMPILER) || defined (__PGI) || defined (ESMF_COMPILER_AOCC)

interface

recursive subroutine compSetServicesRoutine(cplcomp, rc)

use ESMF

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

interface

recursive subroutine compSetVMRoutine(cplcomp, rc)

use ESMF

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

optional :: compSetVMRoutine

#else

abstract interface

recursive subroutine SetServicesRoutine(cplcomp, rc)

use ESMF

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

46

recursive subroutine SetVMRoutine(cplcomp, rc)

use ESMF

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

procedure(SetServicesRoutine) :: compSetServicesRoutine

procedure(SetVMRoutine), optional :: compSetVMRoutine

#endif

integer, target, intent(in), optional :: petList(:)

integer, target, intent(in), optional :: devList(:)

type(ESMF_Info), intent(in), optional :: info

type(ESMF_Config), intent(in), optional :: config

type(ESMF_HConfig), intent(in), optional :: hconfig

type(ESMF_CplComp), intent(out), optional :: comp

integer, intent(out), optional :: rc

DESCRIPTION:

Create and add a CplComp (i.e. Connector) as a child component to a Driver. The component is created on the
provided petList, or by default across the union of PETs of the components indicated by srcCompLabel and
dstCompLabel.

The specified SetServices() routine is called back immediately after the new child component has been created
internally. Very little around the component is set up at that time (e.g. NUOPC component attributes are not yet
available at this stage). The routine should therefore be very light weight, with the sole purpose of setting the entry
points of the component – typically by deriving from a generic component followed by the appropriate specilizations.

The info argument can be used to pass custom attributes to the child component. These attributes are available on
the component when compSetVMRoutine() and compSetServicesRoutine() are called. The attributes
provided in info are copied onto the child component. This allows the same info object to be used for multiple
child components without conflict.

The compLabel must uniquely identify the child component within the context of the Driver component.

If the comp argument is specified, it will reference the newly created component on return.

3.1.4 NUOPC_DriverAddRunElement - Add RunElement for Model, Mediator, or Driver

INTERFACE:

! Private name; call using NUOPC_DriverAddRunElement()

recursive subroutine NUOPC_DriverAddRunElementMPL(driver, slot, compLabel, &

phaseLabel, relaxedflag, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(in) :: slot

character(len=*), intent(in) :: compLabel

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

47

character(len=*), intent(in), optional :: phaseLabel

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Add an element associated with a Model, Mediator, or Driver component to the run sequence of the Driver. The
component must have been added to the Driver, and associated with compLabel prior to this call.

If phaseLabel was not specified, the first entry in the RunPhaseMap attribute of the referenced component will
be used to determine the run phase of the added element.

By default an error is returned if no component is associated with the specified compLabel. This error can be
suppressed by setting relaxedflag=.true., and no entry will be added to the run sequence.

The slot number identifies the run sequence time slot in case multiple sequences are available. Slots start counting
from 1.

3.1.5 NUOPC_DriverAddRunElement - Add RunElement for Connector

INTERFACE:

! Private name; call using NUOPC_DriverAddRunElement()

recursive subroutine NUOPC_DriverAddRunElementCPL(driver, slot, srcCompLabel,&

dstCompLabel, phaseLabel, relaxedflag, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(in) :: slot

character(len=*), intent(in) :: srcCompLabel

character(len=*), intent(in) :: dstCompLabel

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: phaseLabel

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Add an element associated with a Connector component to the run sequence of the Driver. The component must have
been added to the Driver, and associated with srcCompLabel and dstCompLabel prior to this call.

If phaseLabel was not specified, the first entry in the RunPhaseMap attribute of the referenced component will
be used to determine the run phase of the added element.

By default an error is returned if no component is associated with the specified compLabel. This error can be
suppressed by setting relaxedflag=.true., and no entry will be added to the run sequence.

The slot number identifies the run sequence time slot in case multiple sequences are available. Slots start counting
from 1.

48

3.1.6 NUOPC_DriverAddRunElement - Add RunElement that links to another slot

INTERFACE:

! Private name; call using NUOPC_DriverAddRunElement()

recursive subroutine NUOPC_DriverAddRunElementL(driver, slot, linkSlot, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(in) :: slot

integer, intent(in) :: linkSlot

integer, intent(out), optional :: rc

DESCRIPTION:

Add an element to the run sequence of the Driver that links to the time slot indicated by linkSlot.

3.1.7 NUOPC_DriverEgestRunSequence - Egest the run sequence as FreeFormat

INTERFACE:

recursive subroutine NUOPC_DriverEgestRunSequence(driver, freeFormat, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

type(NUOPC_FreeFormat), intent(out) :: freeFormat

integer, intent(out), optional :: rc

DESCRIPTION:

Egest the run sequence stored in the driver as a FreeFormat object. It is the caller’s responsibility to destroy the created
freeFormat object.

3.1.8 NUOPC_DriverGet - Get info from a Driver

INTERFACE:

! Private name; call using NUOPC_DriverGet()

recursive subroutine NUOPC_DriverGet(driver, slotCount, parentClock, &

importState, exportState, rc)

49

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(out), optional :: slotCount

type(ESMF_Clock), intent(out), optional :: parentClock

type(ESMF_State), intent(out), optional :: importState

type(ESMF_State), intent(out), optional :: exportState

integer, intent(out), optional :: rc

DESCRIPTION:

Access Driver information.

3.1.9 NUOPC_DriverGetComp - Get a GridComp child from a Driver

INTERFACE:

! Private name; call using NUOPC_DriverGetComp()

recursive subroutine NUOPC_DriverGetGridComp(driver, compLabel, comp, petList, &

importState, exportState, relaxedflag, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

character(len=*), intent(in) :: compLabel

type(ESMF_GridComp), intent(out), optional :: comp

integer, pointer, optional :: petList(:)

type(ESMF_State), intent(out), optional :: importState

type(ESMF_State), intent(out), optional :: exportState

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Query the Driver for a GridComp (i.e. Model, Mediator, or Driver) child component that was added under
compLabel.

If provided, the petList argument will be associated with the petList that was used to create the referenced compo-
nent. This is an internal allocation owned by the library. This pointer must not be deallocated by the user!

By default an error is returned if no component is associated with the specified compLabel. This error can be
suppressed by setting relaxedflag=.true., and unassociated arguments will be returned.

3.1.10 NUOPC_DriverGetComp - Get a CplComp child from a Driver

INTERFACE:

50

! Private name; call using NUOPC_DriverGetComp()

recursive subroutine NUOPC_DriverGetCplComp(driver, srcCompLabel, &

dstCompLabel, comp, petList, relaxedflag, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

character(len=*), intent(in) :: srcCompLabel

character(len=*), intent(in) :: dstCompLabel

type(ESMF_CplComp), intent(out), optional :: comp

integer, pointer , optional :: petList(:)

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Query the Driver for a CplComp (i.e. Connector) child component that was added under compLabel.

If provided, the petList argument will be associated with the petList that was used to create the referenced compo-
nent. This is an internal allocation owned by the library. This pointer must not be deallocated by the user!

By default an error is returned if no component is associated with the specified compLabel. This error can be
suppressed by setting relaxedflag=.true., and unassociated arguments will be returned.

3.1.11 NUOPC_DriverGetComp - Get all the GridComp child components from a Driver

INTERFACE:

! Private name; call using NUOPC_DriverGetComp()

recursive subroutine NUOPC_DriverGetAllGridComp(driver, compList, petLists, &

rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

type(ESMF_GridComp), pointer, optional :: compList(:)

type(ESMF_PtrInt1D), pointer, optional :: petLists(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Get all the GridComp (i.e. Model, Mediator, or Driver) child components from a Driver.

The incoming compList and petLists arguments must enter unassociated. This means that the user code must
explicitly call nullify() or use the => null() syntax on the variables passed in as the actual arguments.

On return it becomes the responsibility of the caller to deallocate associated compList and petLists arguments:

if (associated(compList)) deallocate(compList)

if (associated(petLists)) deallocate(petLists)

51

Notice that the petLists(i)%ptr members, if associated, are pointing to an internal allocation owned by the
library. These pointers must not be deallocated by the user!

3.1.12 NUOPC_DriverGetComp - Get all the CplComp child components from a Driver

INTERFACE:

! Private name; call using NUOPC_DriverGetComp()

recursive subroutine NUOPC_DriverGetAllCplComp(driver, compList, petLists, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

type(ESMF_CplComp), pointer :: compList(:)

type(ESMF_PtrInt1D), pointer, optional :: petLists(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Get all the CplComp (i.e. Connector) child components from a Driver.

The incoming compList and petLists arguments must enter unassociated. This means that the user code must
explicitly call nullify() or use the => null() syntax on the variables passed in as the actual arguments.

On return it becomes the responsibility of the caller to deallocate associated compList and petLists arguments:

if (associated(compList)) deallocate(compList)

if (associated(petLists)) deallocate(petLists)

Notice that the petLists(i)%ptr members, if associated, are pointing to an internal allocation owned by the
library. These pointers must not be deallocated by the user!

3.1.13 NUOPC_DriverIngestRunSequence - Ingest the run sequence from FreeFormat

INTERFACE:

! Private name; call using NUOPC_DriverIngestRunSequence()

recursive subroutine NUOPC_DriverIngestRunSequenceFF(driver, freeFormat, &

autoAddConnectors, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

type(NUOPC_FreeFormat), intent(in), target :: freeFormat

logical, intent(in), optional :: autoAddConnectors

integer, intent(out), optional :: rc

52

DESCRIPTION:

Ingest the run sequence from a FreeFormat object and replace the run sequence currently held by the driver. Every
line in freeFormat corresponds to either a component run sequence element, or is part of a time loop or alarm
block defintion. Anything following a ’#’ character on a line is considered a comment, and ignored for the purpose of
ingesting run sequence elements.

Component run sequence elements define the run method of a single component. The lines are interpreted se-
quentially, however, components will execute concurrently as long as this is not prevented by data-dependencies or
overlapping petLists.

Each line specifies the precise run method phase for a single component instance. For model, mediator, and driver
components the format is this:

compLabel [phaseLabel]

Here compLabel is the label by which the component instance is known to the driver. It is optionally followed a
phaseLabel identifying a specific run phase. An example of calling the run phase of the ATM instance that contains
the "fast" processes, and is labeled fast:

ATM fast

By default, i.e. without phaseLabel, the first registered run method of the component is used.

The format for connector components is different. It looks like this:

srcCompLabel -> dstCompLabel [connectionOptions]

A connector instance is uniquely known by the two components it connects, i.e. by srcCompLabel and
dstCompLabel. The syntax requires that the token -> be specified between source and destination. Optionally
connectionOptions can be supplied using the format discussed under section 2.4.5. The connection options are
set as attribute ConnectionOptions on the respective connector component.

An example of executing the connector instance that transfers fields from the ATM component to the OCN component,
using redistribution for remapping:

ATM -> OCN :remapMethod=redist

By default autoAddConnectors is .false., which means that all components referenced in the freeFormat
run sequence, including connectors, must already be available as child components of the driver component. An
error will be returned if this is not the case. However, when autoAddConnectors is set to .true., connector
components encountered in the run sequence that are no already present in the driver will be added automatically.
The default NUOPC_Connector implementation is used for all automatically added connector instances.

Lines that contain a time loop definition have the general format:

@{timeStep|*}[:runDuration]

...

...

@

53

Both timeStep and runDuration are numbers in units of seconds. Time loops can be nested and concatenated.

A wildcard "*" character can be specified in place of an actual timeStep number. In this case the timeStep of
the associated run clock object is set to be equal to the timeStep of the time loop one level up in the loop nesting
hierarchy. If a wildcard time step is used for a single outer time loop in the run sequence, then the associated run clock
is identical to the driver clock and must be set explicitly by the driver code, or its parent component.

The runDuration specification is optional. If omitted, the duration of the associated run clock is set to the
timeStep of the time loop one level up in the loop nesting hierarchy. This ensures that for a single nested time
loop, the loop returns to the parent loop level at the appropriate time.

A simple example of a single time loop with one hour timestep:

@3600

...

...

@

Each time loop has its own associated clock object. NUOPC manages these clock objects, i.e. their creation and
destruction, as well as startTime, endTime, timeStep adjustments during the execution. The outer most time
loop of the run sequence is a special case. It uses the driver clock itself. If a single outer most loop is defined in
the run sequence provided by freeFormat, this loop becomes the driver loop level directly. Therefore, setting the
timeStep or runDuration for the outer most time loop results modifiying the driver clock itself. However, for
cases with concatenated loops on the upper level of the run sequence in freeFormat, a single outer loop is added
automatically during ingestion, and the driver clock is used for this loop instead.

A more complex run sequence example, that shows component run sequence elements outside of time loops, a nested
time loop, time step wildcards, explicit duration specifications, and concatenated time loops:

@100:800

ATM -> OCN

OCN -> ATM

ATM

OCN

@*
OCN -> EXTOCN

EXTOCN

@

@

ATM -> EXTATM

EXTATM

@100:1000

ATM -> OCN

OCN -> ATM

ATM

OCN

@

Here the timeStep of the first time loop is explicitly chosen at 100s. The runDuration is explicitly set to 800s.
The first time loop steps the current time forward for 800s, for each iteration executing ATM-OCN coupling, followed
by the nested loop that calls the OCN -> EXTOCN and EXTOCN components. The nested loop uses a wildcard
timeStep and therefore is identical to the parent loop level timeStep of 100s. The nested runDuration is not
specified and therefore also defaults to the parent time step of 100s. In other words, the nested loop is executed exactly
once for every parent loop iteration.

54

After 800s the first time loop is exited, and followed by explicit calls to ATM -> EXTAMT and EXTATM components.
Finally the second time loop is entered for another 1000s runDuration. The timeStep is again explicitly set to
100s. The second time loop only implements ATM-OCN coupling, and no coupling to EXTOCN is implemented.
Finally, after 1800s the sequence returns to the driver level loop.

Lines that contain an alarm block definition have the general format:

@@{alarmTime|*}

...

...

@@

The alarmTime is a number in units of seconds, and indicates at which interval the alarm will ring. The first ring
time of an alarm is the current time of the parent clock.

Specification of the wildcard character * sets the alarmTime equal to the timeStep of the parentClock.

When an alarm rings, the entire alarm block is executed once.

Nesting of time loops and alarm blocks is supported.

3.1.14 NUOPC_DriverIngestRunSequence - Ingest the run sequence from HConfig

INTERFACE:

! Private name; call using NUOPC_DriverIngestRunSequence()

recursive subroutine NUOPC_DriverIngestRunSequenceHC(driver, hconfig, &

autoAddConnectors, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

type(ESMF_HConfig), intent(in) :: hconfig

logical, intent(in), optional :: autoAddConnectors

integer, intent(out), optional :: rc

DESCRIPTION:

Ingest the run sequence from a HConfig object and replace the run sequence currently held by the driver. The provided
hconfig must be a scalar, or else an error is returned. The scalar is interpreted as a string, broken into lines at the
newline character. Each line is subsequently interpreted according to the rules described under the FreeFormat version
of the NUOPC_DriverIngestRunSequence() interface.

To preserve newline characters in run sequences expressed in YAML block notation, it is important to use literals
indicated by the ’|’ character in YAML. For example:

A simple run sequence example as a YAML block literal

--- |

@900:1800 # comments are ignored

55

MED

MED -> ATM # any line can have a comment

MED -> OCN

ATM

OCN

ATM -> MED

OCN -> MED

@

Notice the leading whitespace character(s) on each line of the block literal string. YAML requires at least one (1)
leading whitespace character for strings in block notation.

3.1.15 NUOPC_DriverNewRunSequence - Replace the run sequence in a Driver

INTERFACE:

recursive subroutine NUOPC_DriverNewRunSequence(driver, slotCount, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(in) :: slotCount

integer, intent(out), optional :: rc

DESCRIPTION:

Replace the current run sequence of the Driver with a new one that has slotCount slots. Each slot uses its own
clock for time keeping.

3.1.16 NUOPC_DriverPrint - Print internal Driver information

INTERFACE:

recursive subroutine NUOPC_DriverPrint(driver, orderflag, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

logical, intent(in), optional :: orderflag

integer, intent(out), optional :: rc

DESCRIPTION:

Print internal Driver information. If orderflag is provided and set to .true., the output is ordered from lowest
to highest PET. Setting this flag makes the method collective.

56

3.1.17 NUOPC_DriverSetRunSequence - Set internals of RunSequence slot

INTERFACE:

! Private name; call using NUOPC_DriverSetRunSequence()

recursive subroutine NUOPC_DriverSetRunSequence(driver, slot, clock, alarm, rc)

ARGUMENTS:

type(ESMF_GridComp) :: driver

integer, intent(in) :: slot

type(ESMF_Clock), intent(in) :: clock

type(ESMF_Alarm), intent(in), optional :: alarm

integer, intent(out), optional :: rc

DESCRIPTION:

Set the clock in the run sequence under slot of the Driver.

3.2 Generic Component: NUOPC_ModelBase

MODULE:

module NUOPC_ModelBase

DESCRIPTION:

Partial specialization of a component with a default explicit time dependency. Each time the Run method is called
the component steps one timeStep forward on the passed in parent clock. The component flags incompatibility during
Run if the current time of the incoming clock does not match the current time of the internal clock.

SUPER:

ESMF_GridComp

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine SetServices(modelBase, rc)

type(ESMF_GridComp) :: modelBase

integer, intent(out) :: rc

SEMANTIC SPECIALIZATION LABELS:

• Initialize:

– label_Advertise

∗ Required in order to advertise fields.

57

∗ Use NUOPC_Advertise() to advertise specific fields in the Import- and ExportState of the com-
ponent.

∗ Alternatively set the FieldTransferPolicy attribute on the Import- and ExportState of the component
to request field mirroring.

– label_ModifyAdvertised

∗ Optional. By default do not modify the advertised fields.

∗ Mostly used when field mirroring was requested during Advertise.

∗ Remove undesired advertised fields in the Import- and ExportState of the component.

∗ Adjust attributes e.g. for TransferOffer on advertised fields.

– label_RealizeProvided

∗ Required in order to realize fields.

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
responsible for providing the Field allocation and/or the GeomObject.

– label_AcceptTransfer

∗ Optional. By default accept the Distribution of the transferred GeomObjects.

∗ Change the distribution of any of the transferred GeomObjects.

– label_RealizeAccepted

∗ Optional. Needed for any fields for which component is accepting the GeomObject.

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
accepting the GeomObject.

– label_SetClock

∗ Optional. By default create clock according to time information provided by driver.

∗ Adjust and set the component clock.

– label_DataInitialize

∗ Optional. Needed to initialize data, and to participate in resolution of data dependencies between
components during initialize.

∗ Initialize data in fields.

∗ Set NUOPC attributes used for data dependency resolution.

• Run:

– label_Advance

∗ Called every timeStep on the component internal clock.

∗ Implement the forward integration of the model.

∗ Ensure data in the export fields is updated before returning.

– label_AdvanceClock

∗ Optional. By default the component internal clock is advanced by one internal timeStep at the end of
the Advance step.

– label_CheckImport

∗ Optional. By default check the timestamp of all import fields against the current time of the internal
clock.

– label_SetRunClock

∗ Optional. By default do not adjust the internal clock when entering Run.

– label_TimestampExport

∗ Optinal. By default timestamp all export fields according to the current time of the component internal
clock before returning.

58

• Finalize:

– label_Finalize

∗ Optional. By default do nothing.

∗ Destroy any objects created during Initalize.

3.3 Generic Component: NUOPC_Model

MODULE:

module NUOPC_Model

DESCRIPTION:

Model component with a default explicit time dependency. Each time the Run method is called the model integrates
one timeStep forward on the passed in parent clock. The internal clock is advanced at the end of each Run call. The
component flags incompatibility during Run if the current time of the incoming clock does not match the current time
of the internal clock.

SUPER:

NUOPC_ModelBase

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine SetServices(model, rc)

type(ESMF_GridComp) :: model

integer, intent(out) :: rc

SEMANTIC SPECIALIZATION LABELS:

• Initialize:

– label_Advertise

∗ Required in order to advertise fields.

∗ Use NUOPC_Advertise() to advertise specific fields in the Import- and ExportState of the com-
ponent.

∗ Alternatively set the FieldTransferPolicy attribute on the Import- and ExportState of the component
to request field mirroring.

– label_ModifyAdvertised

∗ Optional. By default do not modify the advertised fields.

∗ Mostly used when field mirroring was requested during Advertise.

∗ Remove undesired advertised fields in the Import- and ExportState of the component.

∗ Adjust attributes e.g. for TransferOffer on advertised fields.

– label_RealizeProvided

∗ Required in order to realize fields.

59

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
responsible for providing the Field allocation and/or the GeomObject.

– label_AcceptTransfer

∗ Optional. By default accept the Distribution of the transferred GeomObjects.

∗ Change the distribution of any of the transferred GeomObjects.

– label_RealizeAccepted

∗ Optional. Needed for any fields for which component is accepting the GeomObject.

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
accepting the GeomObject.

– label_SetClock

∗ Optional. By default create clock according to time information provided by driver.

∗ Adjust and set the component clock.

– label_DataInitialize

∗ Optional. Needed to initialize data, and to participate in resolution of data dependencies between
components during initialize.

∗ Initialize data in fields.

∗ Set NUOPC attributes used for data dependency resolution.

• Run:

– label_Advance

∗ Called every timeStep on the component internal clock.

∗ Implement the forward integration of the model.

∗ Ensure data in the export fields is updated before returning.

– label_AdvanceClock

∗ Optional. By default the component internal clock is advanced by one internal timeStep at the end of
the Advance step.

– label_CheckImport

∗ Optional. By default check the timestamp of all import fields against the current time of the internal
clock.

– label_SetRunClock

∗ Optional. By default do not adjust the internal clock when entering Run.

– label_TimestampExport

∗ Optinal. By default timestamp all export fields according to the current time of the component internal
clock before returning.

• Finalize:

– label_Finalize

∗ Optional. By default do nothing.

∗ Destroy any objects created during Initalize.

60

3.3.1 NUOPC_ModelGet - Get info from a Model

INTERFACE:

subroutine NUOPC_ModelGet(model, driverClock, modelClock, &

importState, exportState, rc)

ARGUMENTS:

type(ESMF_GridComp) :: model

type(ESMF_Clock), intent(out), optional :: driverClock

type(ESMF_Clock), intent(out), optional :: modelClock

type(ESMF_State), intent(out), optional :: importState

type(ESMF_State), intent(out), optional :: exportState

integer, intent(out), optional :: rc

DESCRIPTION:

Access Model information.

3.4 Generic Component: NUOPC_Mediator

MODULE:

module NUOPC_Mediator

DESCRIPTION:

Mediator component with a default explicit time dependency. Each time the Run method is called, the time stamp
on the imported Fields must match the current time (on both the incoming and internal clock). Before returning, the
Mediator time stamps the exported Fields with the same current time, before advancing the internal clock one timeStep
forward.

SUPER:

NUOPC_ModelBase

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine SetServices(mediator, rc)

type(ESMF_GridComp) :: mediator

integer, intent(out) :: rc

SEMANTIC SPECIALIZATION LABELS:

• Initialize:

61

– label_Advertise

∗ Required in order to advertise fields.

∗ Use NUOPC_Advertise() to advertise specific fields in the Import- and ExportState of the com-
ponent.

∗ Alternatively set the FieldTransferPolicy attribute on the Import- and ExportState of the component
to request field mirroring.

– label_ModifyAdvertised

∗ Optional. By default do not modify the advertised fields.

∗ Mostly used when field mirroring was requested during Advertise.

∗ Remove undesired advertised fields in the Import- and ExportState of the component.

∗ Adjust attributes e.g. for TransferOffer on advertised fields.

– label_RealizeProvided

∗ Required in order to realize fields.

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
responsible for providing the Field allocation and/or the GeomObject.

– label_AcceptTransfer

∗ Optional. By default accept the Distribution of the transferred GeomObjects.

∗ Change the distribution of any of the transferred GeomObjects.

– label_RealizeAccepted

∗ Optional. Needed for any fields for which component is accepting the GeomObject.

∗ Use NUOPC_Realize() to realize fields previously advertised, and for which this component is
accepting the GeomObject.

– label_SetClock

∗ Optional. By default create clock according to time information provided by driver.

∗ Adjust and set the component clock.

– label_DataInitialize

∗ Optional. Needed to initialize data, and to participate in resolution of data dependencies between
components during initialize.

∗ Initialize data in fields.

∗ Set NUOPC attributes used for data dependency resolution.

• Run:

– label_Advance

∗ Called every timeStep on the component internal clock.

∗ Implement the forward integration of the model.

∗ Ensure data in the export fields is updated before returning.

– label_AdvanceClock

∗ Optional. By default the component internal clock is advanced by one internal timeStep at the end of
the Advance step.

– label_CheckImport

∗ Optional. By default check the timestamp of all import fields against the current time of the internal
clock.

– label_SetRunClock

∗ Optional. By default do not adjust the internal clock when entering Run.

– label_TimestampExport

62

∗ Optinal. By default timestamp all export fields according to the current time of the component internal
clock before returning.

• Finalize:

– label_Finalize

∗ Optional. By default do nothing.

∗ Destroy any objects created during Initalize.

3.4.1 NUOPC_MediatorGet - Get info from a Mediator

INTERFACE:

subroutine NUOPC_MediatorGet(mediator, driverClock, mediatorClock, &

importState, exportState, rc)

ARGUMENTS:

type(ESMF_GridComp) :: mediator

type(ESMF_Clock), intent(out), optional :: driverClock

type(ESMF_Clock), intent(out), optional :: mediatorClock

type(ESMF_State), intent(out), optional :: importState

type(ESMF_State), intent(out), optional :: exportState

integer, intent(out), optional :: rc

DESCRIPTION:

Access Mediator information.

3.5 Generic Component: NUOPC_Connector

MODULE:

module NUOPC_Connector

DESCRIPTION:

Component that makes a unidirectional connection between model, mediator, and or driver components. During
initialization field pairing is performed between the import and export side according to section 2.4.2, and paired fields
are connected. By default the bilinear regrid method is used during Run to transfer data from the connected import
Fields to the connected export Fields.

SUPER:

ESMF_CplComp

USE DEPENDENCIES:

use ESMF

63

SETSERVICES:

subroutine SetServices(connector, rc)

type(ESMF_CplComp) :: connector

integer, intent(out) :: rc

SEMANTIC SPECIALIZATION LABELS:

• Initialize:

– label_ComputeRouteHandle

∗ Optional. By default compute routehandles according to CplList attribute.

• Run:

– label_ExecuteRouteHandle

∗ Optional. By default execute routehandles stored in the Connector.

• Finalize:

– label_ReleaseRouteHandle

∗ Optional. By default release routehandles stored in the Connector.

– label_Finalize

∗ Optional. By default do nothing.

∗ Destroy any objects created during Initalize.

3.5.1 NUOPC_ConnectorGet - Get parameters from a Connector

INTERFACE:

subroutine NUOPC_ConnectorGet(connector, srcFields, dstFields, rh, state, &

CplSet, cplSetList, srcVM, dstVM, driverClock, rc)

ARGUMENTS:

type(ESMF_CplComp) :: connector

type(ESMF_FieldBundle), intent(out), optional :: srcFields

type(ESMF_FieldBundle), intent(out), optional :: dstFields

type(ESMF_RouteHandle), intent(out), optional :: rh

type(ESMF_State), intent(out), optional :: state

character(*), intent(in), optional :: CplSet

character(ESMF_MAXSTR), pointer, optional :: cplSetList(:)

type(ESMF_VM), intent(out), optional :: srcVM

type(ESMF_VM), intent(out), optional :: dstVM

type(ESMF_Clock), intent(out), optional :: driverClock

integer, intent(out), optional :: rc

64

DESCRIPTION:

Get parameters from the connector internal state.

The Connector keeps information about the connection that it implements in its internal state. When customizing a
Connector, it is often necessary to access and sometimes modify these data objects.

The arguments are:

connector The Connector component.

[srcFields] The FieldBundle under which the Connector keeps track of all connected source side fields. The or-
der in which the fields are stored in srcFields is significant, as it corresponds to the order of fields in
dstFields. Consequently, when accessing and modifying the fields inside of srcFields, it is important to
use the itemorderflag=ESMF_ITEMORDER_ADDORDER option to ESMF_FieldBundleGet().

[dstFields] The FieldBundle under which the Connector keeps track of all connected destination side fields. The
order in which the fields are stored in dstFields is significant, as it corresponds to the order of fields in
srcFields. Consequently, when accessing and modifying the fields inside of dstFields, it is important to
use the itemorderflag=ESMF_ITEMORDER_ADDORDER option to ESMF_FieldBundleGet().

[rh] The RouteHandle that the Connector uses to move data from srcFields to dstFields.

[state] A State object that the Connector keeps to make customization of the Connector more convenient. The generic
Connector code handles creation and destruction of state, but does not access it directly for information.

[CplSet] If present, all of the returned information is specific to the specified coupling set.

[cplSetList] The list of coupling sets currently known to the Connector. This argument must enter the call unasso-
ciated or an error is returned. This means that the user code must explicitly call nullify() or use the =>
null() syntax on the variable passed in as cplSetList argument. On return, the cplSetList argument
will be associated, potentially of size zero. The responsibility for deallocation transfers to the caller.

[srcVM] The VM of the source side component.

[dstVM] The VM of the destination side component.

[driverClock] The Clock object used by the current RunSequence level to drive this component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.5.2 NUOPC_ConnectorSet - Set parameters in a Connector

INTERFACE:

subroutine NUOPC_ConnectorSet(connector, srcFields, dstFields, rh, state, &

CplSet, srcVM, dstVM, rc)

ARGUMENTS:

65

type(ESMF_CplComp) :: connector

type(ESMF_FieldBundle), intent(in), optional :: srcFields

type(ESMF_FieldBundle), intent(in), optional :: dstFields

type(ESMF_RouteHandle), intent(in), optional :: rh

type(ESMF_State), intent(in), optional :: state

character(*), intent(in), optional :: CplSet

type(ESMF_VM), intent(in), optional :: srcVM

type(ESMF_VM), intent(in), optional :: dstVM

integer, intent(out), optional :: rc

DESCRIPTION:

Set parameters in the connector internal state.

The Connector keeps information about the connection that it implements in its internal state. When customizing a
Connector, it is often necessary to access and sometimes modify these data objects.

The arguments are:

connector The Connector component.

[srcFields] The FieldBundle under which the Connector keeps track of all connected source side fields. The order in
which the fields are stored in srcFields is significant, as it corresponds to the order of fields in dstFields.
Consequently, when setting srcFields, it is important to add them in the same order as for dstFields.

[dstFields] The FieldBundle under which the Connector keeps track of all connected destination side fields. The
order in which the fields are stored in dstFields is significant, as it corresponds to the order of fields in
srcFields. Consequently, when setting dstFields, it is important to add them in the same order as for
srcFields.

[rh] The RouteHandle that the Connector uses to move data from srcFields to dstFields.

[state] A State object that the Connector keeps to make customization of the Connector more convenient. Only in very
rare cases would the user want to replace the state that is managed by the generic Connector implementation.
If state is set by this call, the user essentially claims ownership of the previous state object, and becomes
responsible for its destruction. Ownership of the new state is transferred to the Connector and must not be
explicitly destroyed by the user code.

[CplSet] If present, all of the passed in information is set under the specified coupling set.

[srcVM] The VM of the source side component.

[dstVM] The VM of the destination side component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

66

3.6 General Generic Component Methods

3.6.1 NUOPC_CompAreServicesSet - Check if SetServices was called

INTERFACE:

! Private name; call using NUOPC_CompAreServicesSet()

function NUOPC_GridCompAreServicesSet(comp, rc)

RETURN VALUE:

logical :: NUOPC_GridCompAreServicesSet

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if SetServices has been called for comp. Otherwise return .false..

3.6.2 NUOPC_CompAreServicesSet - Check if SetServices was called

INTERFACE:

! Private name; call using NUOPC_CompAreServicesSet()

function NUOPC_CplCompAreServicesSet(comp, rc)

RETURN VALUE:

logical :: NUOPC_CplCompAreServicesSet

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if SetServices has been called for comp. Otherwise return .false..

67

3.6.3 NUOPC_CompAttributeAdd - Add NUOPC GridComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeAdd()

subroutine NUOPC_GridCompAttributeAdd(comp, attrList, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(len=*), intent(in) :: attrList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Add Attributes to the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance").

3.6.4 NUOPC_CompAttributeAdd - Add NUOPC CplComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeAdd()

subroutine NUOPC_CplCompAttributeAdd(comp, attrList, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(len=*), intent(in) :: attrList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Add Attributes to the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance").

3.6.5 NUOPC_CompAttributeEgest - Egest NUOPC GridComp Attributes in FreeFormat

INTERFACE:

! Private name; call using NUOPC_CompAttributeEgest()

subroutine NUOPC_GridCompAttributeEge(comp, freeFormat, rc)

68

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

type(NUOPC_FreeFormat), intent(out) :: freeFormat

integer, intent(out), optional :: rc

DESCRIPTION:

Egest the Attributes of the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance") as a FreeFormat object. It is the caller’s responsibility to destroy the created freeFormat object.

3.6.6 NUOPC_CompAttributeEgest - Egest NUOPC CplComp Attributes in FreeFormat

INTERFACE:

! Private name; call using NUOPC_CompAttributeEgest()

subroutine NUOPC_CplCompAttributeEge(comp, freeFormat, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

type(NUOPC_FreeFormat), intent(out) :: freeFormat

integer, intent(out), optional :: rc

DESCRIPTION:

Egest the Attributes of the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance") as a FreeFormat object. It is the caller’s responsibility to destroy the created freeFormat object.

3.6.7 NUOPC_CompAttributeGet - Get a NUOPC GridComp Attribute - string

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_GridCompAttributeGet(comp, name, value, isPresent, isSet, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

character(*), intent(in) :: name

character(*), intent(out) :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: rc

69

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance.

This call assumes to find a scalar value. An error is returned otherwise.

This call concverts to a string value, regardless of the actual attribute storage.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_GridComp object to be queried.

name The name of the queried attribute.

value The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.8 NUOPC_CompAttributeGet - Get a NUOPC CplComp Attribute - string

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_CplCompAttributeGet(comp, name, value, isPresent, isSet, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

character(*), intent(in) :: name

character(*), intent(out) :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance.

This call assumes to find a scalar value. An error is returned otherwise.

This call concverts to a string value, regardless of the actual attribute storage.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_CplComp object to be queried.

70

name The name of the queried attribute.

value The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.9 NUOPC_CompAttributeGet - Get a NUOPC GridComp Attribute - integer

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_GridCompAttributeGetI(comp, name, value, isPresent, isSet, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

character(*), intent(in) :: name

integer, intent(out) :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_GridComp object to be queried.

name The name of the queried attribute.

value The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

71

3.6.10 NUOPC_CompAttributeGet - Get a NUOPC CplComp Attribute - integer

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_CplCompAttributeGetI(comp, name, value, isPresent, isSet, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

character(*), intent(in) :: name

integer, intent(out) :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_CplComp object to be queried.

name The name of the queried attribute.

value The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.11 NUOPC_CompAttributeGet - Get a NUOPC GridComp Attribute - string list

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_GridCompAttributeGetSL(comp, name, valueList, isPresent, &

isSet, itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

character(*), intent(in) :: name

character(*), intent(out), optional :: valueList(:)

72

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance. Returns with error
if the attribute is not present or not set.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_GridComp object to be queried.

name The name of the queried attribute.

[valueList] The list of values of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.12 NUOPC_CompAttributeGet - Get a NUOPC CplComp Attribute - string list

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_CplCompAttributeGetSL(comp, name, valueList, isPresent, &

isSet, itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

character(*), intent(in) :: name

character(*), intent(out), optional :: valueList(:)

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

73

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance. Returns with error
if the attribute is not present or not set.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_CplComp object to be queried.

name The name of the queried attribute.

[valueList] The list of values of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.13 NUOPC_CompAttributeGet - Get a NUOPC GridComp Attribute - integer list

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_GridCompAttributeGetIL(comp, name, valueList, isPresent, &

isSet, itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

character(*), intent(in) :: name

integer, intent(out) :: valueList(:)

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance. Returns with error
if the attribute is not present or not set.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

74

comp The ESMF_GridComp object to be queried.

name The name of the queried attribute.

valueList The list of values of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.14 NUOPC_CompAttributeGet - Get a NUOPC CplComp Attribute - integer list

INTERFACE:

! Private name; call using NUOPC_CompAttributeGet()

subroutine NUOPC_CplCompAttributeGetIL(comp, name, valueList, isPresent, &

isSet, itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

character(*), intent(in) :: name

integer, intent(out) :: valueList(:)

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of comp using the convention NUOPC and purpose Instance. Returns with error
if the attribute is not present or not set.

Unless isPresent and isSet are provided, return with error if the attribute is not present or not set, respectively.

The arguments are:

comp The ESMF_CplComp object to be queried.

name The name of the queried attribute.

valueList The list of values of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

75

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.6.15 NUOPC_CompAttributeIngest - Ingest free format NUOPC GridComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeIngest()

subroutine NUOPC_GridCompAttributeIng(comp, freeFormat, addFlag, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

type(NUOPC_FreeFormat), intent(in) :: freeFormat

logical, intent(in), optional :: addFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Ingest the Attributes from a FreeFormat object onto the highest level of the standard NUOPC AttPack hierarchy
(convention="NUOPC", purpose="Instance").

Important: Attributes ingested by this method are stored as type character strings, and must be accessed accordingly.
Conversion from string into a different data type, e.g. integer or real, is the user’s responsibility. This method
does not support value lists. Attribute values ingested by this method must not contain whitespace within the value. If
whitespace is found within the value the attribute will not be added to the comp.

If addFlag is .false. (default), an error will be returned if an attribute is to be ingested that was not previously
added to the comp object. If addFlag is .true., all missing attributes will be added by this method automatically
as needed.

Each line in freeFormat is of this format:

attributeName = attributeValue

For example:

Verbosity = 0

Profiling = 0

Diagnostic = 0

could directly be ingested as Attributes for any instance of the four standard NUOPC component kinds. This is because
Verbosity, Profiling, and Diagnostic are pre-defined Attributes of the NUOPC component kinds according
to sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4.

When Attributes are specified in freeFormat that are not pre-defined for a specific component kind, they can still
be ingested by a component instance using the addFlag=.true. option. For instance:

76

ModelOutputChoice = 2

specifies a user-level Attribute, which is not part of the pre-defined Attributes of any of the standard NUOPC compo-
nent kinds.

Currently, whitespace is not supported in the attribute value and the following attributeName fails to be added.

attributeName = attributeValue1 attributeValue2 attributedValue3

If a list is needed then a comma can be used as a delimiter. The attribute value list must then be parsed in user code.

attributeName = attributeValue1,attributeValue2,attributedValue3

3.6.16 NUOPC_CompAttributeIngest - Ingest free format NUOPC CplComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeIngest()

subroutine NUOPC_CplCompAttributeIng(comp, freeFormat, addFlag, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

type(NUOPC_FreeFormat), intent(in) :: freeFormat

logical, intent(in), optional :: addFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Ingest the Attributes from a FreeFormat object onto the highest level of the standard NUOPC AttPack hierarchy
(convention="NUOPC", purpose="Instance").

Important: Attributes ingested by this method are stored as type character strings, and must be accessed accordingly.
Conversion from string into a different data type, e.g. integer or real, is the user’s responsibility.

If addFlag is .false. (default), an error will be returned if an attribute is to be ingested that was not previously
added to the comp object. If addFlag is .true., all missing attributes will be added by this method automatically
as needed.

Each line in freeFormat is of this format:

attributeName = attributeValue

For example:

77

Verbosity = 0

Profiling = 0

Diagnostic = 0

could directly be ingested as Attributes for any instance of the four standard NUOPC component kinds. This is because
Verbosity, Profiling, and Diagnostic are pre-defined Attributes of the NUOPC component kinds according
to sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4.

When Attributes are specified in freeFormat that are not pre-defined for a specific component kind, they can still
be ingested by a component instance using the addFlag=.true. option. For instance:

ModelOutputChoice = 2

specifies a user-level Attribute, which is not part of the pre-defined Attributes of any of the standard NUOPC compo-
nent kinds.

3.6.17 NUOPC_CompAttributeIngest - Ingest NUOPC GridComp Attributes from HConfig

INTERFACE:

! Private name; call using NUOPC_CompAttributeIngest()

subroutine NUOPC_GridCompAttributeIngHC(comp, hconfig, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

type(ESMF_HConfig), intent(in) :: hconfig

integer, intent(out), optional :: rc

DESCRIPTION:

Ingest component attributes from a HConfig object onto the highest level of the standard NUOPC AttPack hierarchy
(convention="NUOPC", purpose="Instance").

The provided hconfig is expected to be a map. An error is returned if this condition is not met. Each key-value pair
held by hconfig is added as an attribute to comp. A copy of the source contents is made.

Transfers of scalar, sequence, and map values from hconfig are supported. Maps are treated recursively. Sequences
are restricted to scalar elements of the same typekind.

The keys of any map provided by the hconfig object must be of scalar type. Keys are interpreted as strings when
transferred as an attribute.

Existing attributes with the same key are overridden by this operation. When attributes are overridden, the typekind of
the associated value element is allowed to change.

A simple YAML definition of standard NUOPC attributes, followed by

component specific attributes.

78

Verbosity: 4609 # decimal representation of explicit bit pattern

Profiling: low # pre-defined NUOPC setting

Diagnostic: 0 # explicit 0 turns OFF feature

CustomSeq1: [1, 2, 3, 4] # sequence of integers

CustomSeq2: [1., 2., 3., 4.] # sequence of floats

CustomSeq3: [true, false] # sequence of bools

CustomType: {k1: [a, aa, aaa], k2: b, k3: c} # complex structure

3.6.18 NUOPC_CompAttributeIngest - Ingest NUOPC CplComp Attributes from HConfig

INTERFACE:

! Private name; call using NUOPC_CompAttributeIngest()

subroutine NUOPC_CplCompAttributeIngHC(comp, hconfig, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

type(ESMF_HConfig), intent(in) :: hconfig

integer, intent(out), optional :: rc

DESCRIPTION:

Ingest component attributes from a HConfig object onto the highest level of the standard NUOPC AttPack hierarchy
(convention="NUOPC", purpose="Instance").

The provided hconfig is expected to be a map. An error is returned if this condition is not met. Each key-value pair
held by hconfig is added as an attribute to comp. A copy of the source contents is made.

Transfers of scalar, sequence, and map values from hconfig are supported. Maps are treated recursively. Sequences
are restricted to scalar elements of the same typekind.

The keys of any map provided by the hconfig object must be of scalar type. Keys are interpreted as strings when
transferred as an attribute.

Existing attributes with the same key are overridden by this operation. When attributes are overridden, the typekind of
the associated value element is allowed to change.

A simple YAML definition of standard NUOPC attributes, followed by

component specific attributes.

Verbosity: 4609 # decimal representation of explicit bit pattern

Profiling: low # pre-defined NUOPC setting

Diagnostic: 0 # explicit 0 turns OFF feature

CustomSeq1: [1, 2, 3, 4] # sequence of integers

CustomSeq2: [1., 2., 3., 4.] # sequence of floats

CustomSeq3: [true, false] # sequence of bools

CustomType: {k1: [a, aa, aaa], k2: b, k3: c} # complex structure

79

3.6.19 NUOPC_CompAttributeReset - Reset NUOPC GridComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeReset()

subroutine NUOPC_GridCompAttributeReset(comp, attrList, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(len=*), intent(in) :: attrList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Reset Attributes on the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance").

3.6.20 NUOPC_CompAttributeReset - Reset NUOPC CplComp Attributes

INTERFACE:

! Private name; call using NUOPC_CompAttributeReset()

subroutine NUOPC_CplCompAttributeReset(comp, attrList, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(len=*), intent(in) :: attrList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Reset Attributes on the highest level of the standard NUOPC AttPack hierarchy (convention="NUOPC", pur-
pose="Instance").

3.6.21 NUOPC_CompAttributeSet - Set a NUOPC GridComp Attribute

INTERFACE:

80

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_GridCompAttributeSetS(comp, name, value, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(*), intent(in) :: name

character(*), intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.22 NUOPC_CompAttributeSet - Set a NUOPC CplComp Attribute

INTERFACE:

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_CplCompAttributeSetS(comp, name, value, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(*), intent(in) :: name

character(*), intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.23 NUOPC_CompAttributeSet - Set a NUOPC GridComp Attribute

INTERFACE:

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_GridCompAttributeSetI(comp, name, value, rc)

ARGUMENTS:

81

type(ESMF_GridComp) :: comp

character(*), intent(in) :: name

integer, intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.24 NUOPC_CompAttributeSet - Set a NUOPC CplComp Attribute

INTERFACE:

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_CplCompAttributeSetI(comp, name, value, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(*), intent(in) :: name

integer, intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.25 NUOPC_CompAttributeSet - Set a NUOPC GridComp List Attribute

INTERFACE:

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_GridCompAttributeSetSL(comp, name, valueList, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(*), intent(in) :: name

character(*), intent(in) :: valueList(:)

integer, intent(out), optional :: rc

82

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.26 NUOPC_CompAttributeSet - Set a NUOPC CplComp List Attribute

INTERFACE:

! Private name; call using NUOPC_CompAttributeSet()

subroutine NUOPC_CplCompAttributeSetSL(comp, name, valueList, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(*), intent(in) :: name

character(*), intent(in) :: valueList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attribute name inside of comp on the highest level of the standard NUOPC AttPack hierarchy (conven-
tion="NUOPC", purpose="Instance").

3.6.27 NUOPC_CompCheckSetClock - Check Clock compatibility and set stopTime

INTERFACE:

! Private name; call using NUOPC_CompCheckSetClock()

subroutine NUOPC_GridCompCheckSetClock(comp, externalClock, checkTimeStep, &

forceTimeStep, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_Clock), intent(in) :: externalClock

logical, intent(in), optional :: checkTimeStep

logical, intent(in), optional :: forceTimeStep

integer, intent(out), optional :: rc

DESCRIPTION:

Compare externalClock to the internal clock of comp to make sure they match in their current time. Also ensure
that the time step of the external clock is a multiple of the time step of the internal clock. If both conditions are satisfied

83

then set the stop time of the internal clock so it is reached in one time step of the external clock. Otherwise leave the
internal clock unchanged and return with error. The direction of the involved clocks is taking into account. Setting
the forceTimeStep argument to .true. forces the timeStep of the externalClock to be used to reset the
timeStep of the internal clock.

3.6.28 NUOPC_CompDerive - Derive a GridComp from a generic component

INTERFACE:

! Private name; call using NUOPC_CompDerive()

recursive subroutine NUOPC_GridCompDerive(comp, genericSetServicesRoutine, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp

interface

subroutine genericSetServicesRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Derive a GridComp (i.e. Model, Mediator, or Driver) from a generic component by calling into the specified
SetServices() routine of the generic component. This is typically the first call in the SetServices() routine
of the specializing component, and is followed by NUOPC_CompSpecialize() calls.

3.6.29 NUOPC_CompDerive - Derive a CplComp from a generic component

INTERFACE:

! Private name; call using NUOPC_CompDerive()

recursive subroutine NUOPC_CplCompDerive(comp, genericSetServicesRoutine, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp

interface

subroutine genericSetServicesRoutine(cplcomp, rc)

use ESMF

implicit none

84

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Derive a CplComp (i.e. Connector) from a generic component by calling into the specified SetServices() rou-
tine of the generic component. This is typically the first call in the SetServices() routine of the specializing
component, and is followed by NUOPC_CompSpecialize() calls.

3.6.30 NUOPC_CompFilterPhaseMap - Filter the Phase Map of a GridComp

INTERFACE:

! Private name; call using NUOPC_CompFilterPhaseMap()

subroutine NUOPC_GridCompFilterPhaseMap(comp, methodflag, acceptStringList, &

rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in) :: acceptStringList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Filter all PhaseMap entries in a GridComp (i.e. Model, Mediator, or Driver) that do not match any entry in the
acceptStringList.

3.6.31 NUOPC_CompFilterPhaseMap - Filter the Phase Map of a CplComp

INTERFACE:

! Private name; call using NUOPC_CompFilterPhaseMap()

subroutine NUOPC_CplCompFilterPhaseMap(comp, methodflag, acceptStringList, &

rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in) :: acceptStringList(:)

integer, intent(out), optional :: rc

85

DESCRIPTION:

Filter all PhaseMap entries in a CplComp (i.e. Connector) that do not match any entry in the acceptStringList.

3.6.32 NUOPC_CompGet - Access info from GridComp

INTERFACE:

! Private name; call using NUOPC_CompGet()

subroutine NUOPC_GridCompGet(comp, name, verbosity, profiling, diagnostic, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: verbosity

integer, intent(out), optional :: profiling

integer, intent(out), optional :: diagnostic

integer, intent(out), optional :: rc

DESCRIPTION:

Access information from a GridComp.

3.6.33 NUOPC_CompGet - Access info from CplComp

INTERFACE:

! Private name; call using NUOPC_CompGet()

subroutine NUOPC_CplCompGet(comp, name, verbosity, profiling, diagnostic, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: verbosity

integer, intent(out), optional :: profiling

integer, intent(out), optional :: diagnostic

integer, intent(out), optional :: rc

DESCRIPTION:

Access information from a CplComp.

86

3.6.34 NUOPC_CompSearchPhaseMap - Search the Phase Map of a GridComp

INTERFACE:

! Private name; call using NUOPC_CompSearchPhaseMap()

subroutine NUOPC_GridCompSearchPhaseMap(comp, methodflag, internalflag, &

phaseLabel, phaseIndex, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

logical, intent(in), optional :: internalflag

character(len=*), intent(in), optional :: phaseLabel

integer, intent(out) :: phaseIndex

integer, intent(out), optional :: rc

DESCRIPTION:

Search all PhaseMap entries in a GridComp (i.e. Model, Mediator, or Driver) to see if phaseLabel is found. Return
the associated ESMF phaseIndex, or -1 if not found. If phaseLabel is not specified, set phaseIndex to the
first entry in the PhaseMap, or -1 if there are no entries. The internalflag argument allows to search the internal
phase maps of driver components. The default is internalflag=.false..

3.6.35 NUOPC_CompSearchPhaseMap - Search the Phase Map of a CplComp

INTERFACE:

! Private name; call using NUOPC_CompSearchPhaseMap()

subroutine NUOPC_CplCompSearchPhaseMap(comp, methodflag, phaseLabel, &

phaseIndex, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in), optional :: phaseLabel

integer, intent(out) :: phaseIndex

integer, intent(out), optional :: rc

DESCRIPTION:

Search all PhaseMap entries in a CplComp (i.e. Connector) to see if phaseLabel is found. Return the associated
ESMF phaseIndex, or -1 if not found. If phaseLabel is not specified, set phaseIndex to the first entry in the
PhaseMap, or -1 if there are no entries.

87

3.6.36 NUOPC_CompSearchRevPhaseMap - Reverse Search the Phase Map of a GridComp

INTERFACE:

! Private name; call using NUOPC_CompSearchRevPhaseMap()

subroutine NUOPC_GridCompSearchRevPhaseMap(comp, methodflag, internalflag, &

phaseIndex, phaseLabel, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

logical, intent(in), optional :: internalflag

integer, intent(in), optional :: phaseIndex

character(len=*), intent(out) :: phaseLabel

integer, intent(out), optional :: rc

DESCRIPTION:

Search all PhaseMap entries in a GridComp (i.e. Model, Mediator, or Driver) to see if the ESMF phaseIndex is
found. Return the associated phaseLabel, or an empty string if not found. If phaseIndex is not specified, set
phaseLabel to the first entry in the PhaseMap, or an empty string if there are no entries. The internalflag
argument allows to search the internal phase maps of driver components. The default is internalflag=.false..

3.6.37 NUOPC_CompSearchRevPhaseMap - Reverse Search the Phase Map of a CplComp

INTERFACE:

! Private name; call using NUOPC_CompSearchRevPhaseMap()

subroutine NUOPC_CplCompSearchRevPhaseMap(comp, methodflag, phaseIndex, &

phaseLabel, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

integer, intent(in), optional :: phaseIndex

character(len=*), intent(out) :: phaseLabel

integer, intent(out), optional :: rc

DESCRIPTION:

Search all PhaseMap entries in a CplComp (i.e. Connector) to see if the ESMF phaseIndex is found. Return the
associated phaseLabel, or an empty string if not found. If phaseIndex is not specified, set phaseLabel to the
first entry in the PhaseMap, or an empty string if there are no entries.

88

3.6.38 NUOPC_CompSetClock - Initialize and set the internal Clock of a GridComp

INTERFACE:

! Private name; call using NUOPC_CompSetClock()

subroutine NUOPC_GridCompSetClock(comp, externalClock, stabilityTimeStep, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_Clock), intent(in) :: externalClock

type(ESMF_TimeInterval), intent(in), optional :: stabilityTimeStep

integer, intent(out), optional :: rc

DESCRIPTION:

Set the component internal clock as a copy of externalClock, but with a timeStep that is less than or equal to the
stabilityTimeStep. At the same time ensure that the timeStep of the external clock is a multiple of the timeStep of the
internal clock. If the stabilityTimeStep argument is not provided then the internal clock will simply be set as a copy
of the external clock.

3.6.39 NUOPC_CompSetEntryPoint - Set entry point for a GridComp (DEPRECATED!)

INTERFACE:

! Private name; call using NUOPC_CompSetEntryPoint()

subroutine NUOPC_GridCompSetEntryPoint(comp, methodflag, phaseLabelList, &

userRoutine, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in) :: phaseLabelList(:)

interface

subroutine userRoutine(gridcomp, importState, exportState, clock, rc)

use ESMF_CompMod

use ESMF_StateMod

use ESMF_ClockMod

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

89

DESCRIPTION:

Set an entry point for a GridComp (i.e. Model, Mediator, or Driver). Publish the new entry point in the correct
PhaseMap component attribute.

Starting with version 8.1.0, the use of this method is deprecated. Components should instead specialize exclusively
using the NUOPC_CompSpecialize() method.

3.6.40 NUOPC_CompSetEntryPoint - Set entry point for a CplComp (DEPRECATED!)

INTERFACE:

! Private name; call using NUOPC_CompSetEntryPoint()

subroutine NUOPC_CplCompSetEntryPoint(comp, methodflag, phaseLabelList, &

userRoutine, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in) :: phaseLabelList(:)

interface

subroutine userRoutine(cplcomp, importState, exportState, clock, rc)

use ESMF_CompMod

use ESMF_StateMod

use ESMF_ClockMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Set an entry point for a CplComp (i.e. Connector). Publish the new entry point in the correct PhaseMap component
attribute.

Starting with version 8.1.0, the use of this method is deprecated. Components should instead specialize exclusively
using the NUOPC_CompSpecialize() method.

3.6.41 NUOPC_CompSetInternalEntryPoint - Set internal entry point for a GridComp

INTERFACE:

90

! Private name; call using NUOPC_CompSetInternalEntryPoint()

subroutine NUOPC_GridCompSetIntEntryPoint(comp, methodflag, phaseLabelList, &

userRoutine, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

type(ESMF_Method_Flag), intent(in) :: methodflag

character(len=*), intent(in) :: phaseLabelList(:)

interface

subroutine userRoutine(gridcomp, importState, exportState, clock, rc)

use ESMF_CompMod

use ESMF_StateMod

use ESMF_ClockMod

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Set an internal entry point for a GridComp (i.e. Driver). Only Drivers currently utilize internal entry points. Internal
entry points allow user specialization on the driver level during initialization and run sequencing.

3.6.42 NUOPC_CompSetServices - Try to find and call SetServices in a shared object

INTERFACE:

! Private name; call using NUOPC_CompSetServices()

recursive subroutine NUOPC_GridCompSetServices(comp, sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

DESCRIPTION:

Try to find a routine called "SetServices" in the sharedObj file and execute the routine. An attempt is made to
find a routine that is close in name to "SetServices", allowing for compiler name mangling, i.e. upper and lower
case, as well as trailing underscores. The asterisk character (*) is supported as a wildcard for the file name suffix in

91

sharedObj. When present, the asterisk is replaced by "so", "dylib", and "dll", in this order, and the first successfully
loaded object is used. If the sharedObj argument is not provided, the executable itself is searched.

3.6.43 NUOPC_CompSetVM - Try to find and call SetVM in a shared object

INTERFACE:

! Private name; call using NUOPC_CompSetVM()

recursive subroutine NUOPC_GridCompSetVM(comp, sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

DESCRIPTION:

Try to find a routine called "SetVM" in the sharedObj file and execute the routine. An attempt is made to find a
routine that is close in name to "SetVM", allowing for compiler name mangling, i.e. upper and lower case, as well as
trailing underscores. The asterisk character (*) is supported as a wildcard for the file name suffix in sharedObj.
When present, the asterisk is replaced by "so", "dylib", and "dll", in this order, and the first successfully loaded object
is used. If the sharedObj argument is not provided, the executable itself is searched.

3.6.44 NUOPC_CompSpecialize - Specialize a derived GridComp

INTERFACE:

! Private name; call using NUOPC_CompSpecialize()

subroutine NUOPC_GridCompSpecialize(comp, specLabel, specPhaseLabel, &

specRoutine, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

character(len=*), intent(in) :: specLabel

character(len=*), intent(in), optional :: specPhaseLabel

interface

subroutine specRoutine(gridcomp, rc)

use ESMF

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

92

DESCRIPTION:

Specialize a derived GridComp (i.e. Model, Mediator, or Driver). If specPhaseLabel is specified, the specializa-
tion only applies to the associated phase. Otherwise the specialization applies to all phases.

3.6.45 NUOPC_CompSpecialize - Specialize a derived CplComp

INTERFACE:

! Private name; call using NUOPC_CompSpecialize()

subroutine NUOPC_CplCompSpecialize(comp, specLabel, specPhaseLabel, &

specRoutine, rc)

ARGUMENTS:

type(ESMF_CplComp) :: comp

character(len=*), intent(in) :: specLabel

character(len=*), intent(in), optional :: specPhaseLabel

interface

subroutine specRoutine(cplcomp, rc)

use ESMF

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Specialize a derived CplComp (i.e. Connector). If specPhaseLabel is specified, the specialization only applies to
the associated phase. Otherwise the specialization applies to all phases.

3.7 Field Dictionary Methods

3.7.1 NUOPC_FieldDictionaryAddEntry - Add an entry to the NUOPC Field dictionary

INTERFACE:

subroutine NUOPC_FieldDictionaryAddEntry(standardName, canonicalUnits, rc)

ARGUMENTS:

character(*), intent(in) :: standardName

character(*), intent(in) :: canonicalUnits

integer, intent(out), optional :: rc

93

DESCRIPTION:

Add an entry to the NUOPC Field dictionary. If necessary the dictionary is first set up.

3.7.2 NUOPC_FieldDictionaryEgest - Egest NUOPC Field dictionary into FreeFormat

INTERFACE:

subroutine NUOPC_FieldDictionaryEgest(freeFormat, iofmt, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(out) :: freeFormat

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Egest the contents of the NUOPC Field dictionary into a FreeFormat object. If I/O format option iofmt is provided
and equal to ESMF_IOFMT_YAML, the FreeFormat object will contain the NUOPC Field dictionary expressed in
YAML format. Other values for iofmt are ignored and this method behaves as if the optional iofmt argument were
missing. In such a case, freeFormat will contain NUOPC Field dictionary entries in the traditional format. It is the
caller’s responsibility to destroy the created freeFormat object.

3.7.3 NUOPC_FieldDictionaryGetEntry - Get information about a NUOPC Field dictionary entry

INTERFACE:

subroutine NUOPC_FieldDictionaryGetEntry(standardName, canonicalUnits, rc)

ARGUMENTS:

character(*), intent(in) :: standardName

character(*), intent(out), optional :: canonicalUnits

integer, intent(out), optional :: rc

DESCRIPTION:

Return the canonical units that the NUOPC Field dictionary associates with the standardName.

94

3.7.4 NUOPC_FieldDictionaryHasEntry - Check whether the NUOPC Field dictionary has a specific entry

INTERFACE:

function NUOPC_FieldDictionaryHasEntry(standardName, rc)

RETURN VALUE:

logical :: NUOPC_FieldDictionaryHasEntry

ARGUMENTS:

character(*), intent(in) :: standardName

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the NUOPC Field dictionary has an entry with the specified standardName, .false. other-
wise.

3.7.5 NUOPC_FieldDictionaryMatchSyno - Check whether the NUOPC Field dictionary considers the stan-

dard names synonyms

INTERFACE:

function NUOPC_FieldDictionaryMatchSyno(standardName1, standardName2, rc)

RETURN VALUE:

logical :: NUOPC_FieldDictionaryMatchSyno

ARGUMENTS:

character(*), intent(in) :: standardName1

character(*), intent(in) :: standardName2

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the NUOPC Field dictionary considers standardName1 and standardName2 synonyms,
.false. otherwise. Also, if standardName1 and/or standardName2 do not correspond to an existing dictio-
nary entry, .false. will be returned.

95

3.7.6 NUOPC_FieldDictionarySetSyno - Set synonyms in the NUOPC Field dictionary

INTERFACE:

subroutine NUOPC_FieldDictionarySetSyno(standardNames, rc)

ARGUMENTS:

character(*), intent(in) :: standardNames(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Set all of the elements of the standardNames argument to be considered synonyms by the field dictionary. Every
element in standardNames must correspond to the standard name of already existing entries in the field dictionary,
or else an error will be returned.

3.7.7 NUOPC_FieldDictionarySetup - Setup the default NUOPC Field dictionary

INTERFACE:

! Private name; call using NUOPC_FieldDictionarySetup()

subroutine NUOPC_FieldDictionarySetupDefault(rc)

ARGUMENTS:

integer, intent(out), optional :: rc

DESCRIPTION:

Setup the default NUOPC Field dictionary.

3.7.8 NUOPC_FieldDictionarySetup - Setup the NUOPC Field dictionary from YAML file

INTERFACE:

! Private name; call using NUOPC_FieldDictionarySetup()

subroutine NUOPC_FieldDictionarySetupFile(fileName, rc)

ARGUMENTS:

character(len=*), intent(in) :: fileName

integer, intent(out), optional :: rc

96

DESCRIPTION:

Setup the NUOPC Field dictionary by reading its content from YAML file. If the NUOPC Field dictionary already
exists, remove it and create a new one. This feature requires ESMF built with YAML support. Please see the ESMF
User’s Guide for details.

3.8 Free Format Methods

3.8.1 NUOPC_FreeFormatAdd - Add lines to a FreeFormat object

INTERFACE:

subroutine NUOPC_FreeFormatAdd(freeFormat, stringList, line, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(inout) :: freeFormat

character(len=*), intent(in) :: stringList(:)

integer, optional, intent(in) :: line

integer, optional, intent(out) :: rc

DESCRIPTION:

Add lines to a FreeFormat object. The capacity of freeFormat may increase during this operation. The new lines
provided in stringList are added starting at position line. If line is greater than the current lineCount of
freeFormat, blank lines are inserted to fill the gap. By default, i.e. without specifying the line argument, the
elements in stringList are added to the end of the freeFormat object.

3.8.2 NUOPC_FreeFormatCreate - Create a FreeFormat object

INTERFACE:

! Private name; call using NUOPC_FreeFormatCreate()

function NUOPC_FreeFormatCreateDefault(freeFormat, stringList, capacity, rc)

RETURN VALUE:

type(NUOPC_FreeFormat) :: NUOPC_FreeFormatCreateDefault

ARGUMENTS:

type(NUOPC_FreeFormat), optional, intent(in) :: freeFormat

character(len=*), optional, intent(in) :: stringList(:)

integer, optional, intent(in) :: capacity

integer, optional, intent(out) :: rc

97

DESCRIPTION:

Create a new FreeFormat object, which by default is empty. If freeFormat is provided, then the newly created
object starts as a copy of freeFormat. If stringList is provided, then it is added to the end of the newly
created object. If capacity is provided, it is used for the initial creation of the newly created FreeFormat object.
However, if the freeFormat or stringList arguments are present, the final capacity may be larger than specified
by capacity.

3.8.3 NUOPC_FreeFormatCreate - Create a FreeFormat object from Config

INTERFACE:

! Private name; call using NUOPC_FreeFormatCreate()

function NUOPC_FreeFormatCreateRead(config, label, relaxedflag, rc)

RETURN VALUE:

type(NUOPC_FreeFormat) :: NUOPC_FreeFormatCreateRead

ARGUMENTS:

type(ESMF_Config) :: config

character(len=*), intent(in) :: label

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Create a new FreeFormat object from ESMF_Config object. The config object must exist, and label must refer-
ence either a single line or a table attribute within config. The content of the attribute is read and returned in the
newly created FreeFormat object.

By default an error is returned if label is not found in config. This error can be suppressed by setting
relaxedflag=.true., in which case an empty FreeFormat object is returned.

3.8.4 NUOPC_FreeFormatDestroy - Destroy a FreeFormat object

INTERFACE:

subroutine NUOPC_FreeFormatDestroy(freeFormat, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(inout) :: freeFormat

integer, optional, intent(out) :: rc

98

DESCRIPTION:

Destroy a FreeFormat object. All internal memory is deallocated.

3.8.5 NUOPC_FreeFormatGet - Get information from a FreeFormat object

INTERFACE:

subroutine NUOPC_FreeFormatGet(freeFormat, lineCount, capacity, stringList, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(in) :: freeFormat

integer, optional, intent(out) :: lineCount

integer, optional, intent(out) :: capacity

character(len=NUOPC_FreeFormatLen), optional, pointer :: stringList(:)

integer, optional, intent(out) :: rc

DESCRIPTION:

Get information from a FreeFormat object.

3.8.6 NUOPC_FreeFormatGetLine - Get line info from a FreeFormat object

INTERFACE:

subroutine NUOPC_FreeFormatGetLine(freeFormat, line, commentChar, lineString, &

tokenCount, tokenList, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(in) :: freeFormat

integer, intent(in) :: line

character, optional, intent(in) :: commentChar

character(len=NUOPC_FreeFormatLen), optional, intent(out) :: lineString

integer, optional, intent(out) :: tokenCount

character(len=NUOPC_FreeFormatLen), optional, intent(out) :: tokenList(:)

integer, optional, intent(out) :: rc

DESCRIPTION:

Get information about a specific line in a FreeFormat object. If commentChar is specified, anything on the line,
starting with commentChar is considered a comment, and subsequently ignored.

99

3.8.7 NUOPC_FreeFormatLog - Write a FreeFormat object to the default Log

INTERFACE:

subroutine NUOPC_FreeFormatLog(freeFormat, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(in) :: freeFormat

integer, optional, intent(out) :: rc

DESCRIPTION:

Write a FreeFormat object to the default Log.

3.8.8 NUOPC_FreeFormatPrint - Print a FreeFormat object

INTERFACE:

subroutine NUOPC_FreeFormatPrint(freeFormat, rc)

ARGUMENTS:

type(NUOPC_FreeFormat), intent(in) :: freeFormat

integer, optional, intent(out) :: rc

DESCRIPTION:

Print a FreeFormat object.

3.9 Utility Routines

3.9.1 NUOPC_AddNamespace - Add a nested state with Namespace to a State

INTERFACE:

subroutine NUOPC_AddNamespace(state, Namespace, nestedStateName, &

nestedState, vm, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(len=*), intent(in) :: Namespace

character(len=*), intent(in), optional :: nestedStateName

type(ESMF_State), intent(out), optional :: nestedState

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

100

DESCRIPTION:

Add a Namespace to state. Namespaces are implemented via nested states. This creates a nested state inside of
state. The nested state is returned as nestedState. If provided, nestedStateName will be used to name the
newly created nested state. The default name of the nested state is equal to Namespace.

The arguments are:

state The ESMF_State object to which the Namespace is added.

Namespace The Namespace string.

[nestedStateName] Name of the nested state. Defaults to Namespace.

[nestedState] Optional return of the newly created nested state.

[vm] If present, the nested State created to hold the namespace is created on the specified ESMF_VM object. The
default is to create the nested State on the VM of the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.2 NUOPC_AddNestedState - Add a nested state to a state with NUOPC attributes

INTERFACE:

subroutine NUOPC_AddNestedState(state, Namespace, CplSet, nestedStateName, &

vm, nestedState, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(len=*), intent(in), optional :: Namespace

character(len=*), intent(in), optional :: CplSet

character(len=*), intent(in), optional :: nestedStateName

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_State), intent(out), optional :: nestedState

integer, intent(out), optional :: rc

DESCRIPTION:

Create a nested state inside of state. The arguments Namespace and tt CplSet are used to set NUOPC attributes
on the newly created state. The nested state is returned as nestedState. If provided, nestedStateName will be
used to name the newly created nested state. The default name of the nested state is equal to Namespace_CplSet,
Namespace, or CplSet if the arguments are provided.

The arguments are:

state The ESMF_State object to which the namespace is added.

[Namespace] Optional The Namespace string. Defaults to "__UNSPECIFIED__".

101

[CplSet] Optional The CplSet string. Defaults to "__UNSPECIFIED__".

[nestedStateName] Name of the nested state. Defaults to Namespace_CplSet, Namespace, or CplSet if
arguments are provided.

[vm] If present, the nested state object is created on the specified ESMF_VM object. The default is to create the nested
state object on the VM of the current component context.

[nestedState] Optional return of the newly created nested state.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.3 NUOPC_Advertise - Advertise a single Field in a State

INTERFACE:

! Private name; call using NUOPC_Advertise()

subroutine NUOPC_AdvertiseField(state, StandardName, Units, &

LongName, ShortName, name, TransferOfferGeomObject, SharePolicyField, &

SharePolicyGeomObject, vm, field, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(*), intent(in) :: StandardName

character(*), intent(in), optional :: Units

character(*), intent(in), optional :: LongName

character(*), intent(in), optional :: ShortName

character(*), intent(in), optional :: name

character(*), intent(in), optional :: TransferOfferGeomObject

character(*), intent(in), optional :: SharePolicyField

character(*), intent(in), optional :: SharePolicyGeomObject

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Advertise a field in a state. This creates an empty field and adds it to state. The "StandardName", "Units", "Long-
Name", "ShortName", and "TransferOfferGeomObject" attributes of the field are set according to the provided input..

The call checks the provided information against the NUOPC Field Dictionary to ensure correctness. Defaults are set
according to the NUOPC Field Dictionary.

The arguments are:

state The ESMF_State object through which the field is advertised.

StandardName The "StandardName" attribute of the advertised field. Must be a StandardName found in the NUOPC
Field Dictionary.
NOTE that if by below default rules, StandardName is also used as the input for name, then it must not
contain the slash ("/") character.

102

[Units] The "Units" attribute of the advertised field. Must be convertible to the canonical units specified in the NUOPC
Field Dictionary for the specified StandardName. (Currently this is restricted to be identical to the canonical
untis specified in the NUOPC Field Dictionary.) If omitted, the default is to use the canonical units associated
with the StandardName in the NUOPC Field Dictionary.

[LongName] The "LongName" attribute of the advertised field. NUOPC does not restrict the value of this attribute.
If omitted, the default is to use the StandardName.

[ShortName] The "ShortName" attribute of the advertised field. NUOPC does not restrict the value of this attribute.
If omitted, the default is to use the StandardName.
NOTE that if by below default rules, ShortName is also used as the input for name, then it must not contain
the slash ("/") character.

[name] The actual name of the advertised field by which it is accessed in the state object. The string provided for
name must not contain the slash ("/") character. If omitted, the default is to use the value of the ShortName.

[TransferOfferGeomObject] If the state intent of state is ESMF_STATEINTENT_EXPORT, the "ProducerTrans-
ferOffer" attribute of the advertised field is set. If the state intent of state is ESMF_STATEINTENT_IMPORT,
the "ConsumerTransferOffer" attribute of the advertised field is set. NUOPC controls the vocabulary of this
attribute. Valid options are "will provide", "can provide", "cannot provide". If omitted, the default is "will
provide".

[SharePolicyField] The "SharePolicyField" attribute of the advertised field. NUOPC controls the vocabulary of this
attribute. Valid options are "share", and "not share". If omitted, the default is "not share".

[SharePolicyGeomObject] The "SharePolicyGeomObject" attribute of the advertised field. NUOPC controls the
vocabulary of this attribute. Valid options are "share", and "not share". If omitted, the default is equal to
SharePolicyField.

[vm] If present, the Field object used during advertising is created on the specified ESMF_VM object. The default is
to create the Field object on the VM of the current component context.

[field] Returns the empty field object that was used to advertise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.4 NUOPC_Advertise - Advertise a list of Fields in a State

INTERFACE:

! Private name; call using NUOPC_Advertise()

subroutine NUOPC_AdvertiseFields(state, StandardNames, &

TransferOfferGeomObject, SharePolicyField, SharePolicyGeomObject, vm, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(*), intent(in) :: StandardNames(:)

character(*), intent(in), optional :: TransferOfferGeomObject

character(*), intent(in), optional :: SharePolicyField

character(*), intent(in), optional :: SharePolicyGeomObject

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

103

DESCRIPTION:

Advertise a list of fields in a state. This creates a list of empty fields and adds it to the state. The "StandardName",
"TransferOfferGeomObject", "SharePolicyField", and "SharePolicyGeomObject" attributes of all the fields are set
according to the provided input. The "Units", "LongName", and "ShortName" attributes for each field are set according
to the defaults documented under method 3.9.3

The call checks the provided information against the NUOPC Field Dictionary to ensure correctness.

The arguments are:

state The ESMF_State object through which the fields are advertised.

StandardNames A list of "StandardName" attributes of the advertised fields. Must be StandardNames found in the
NUOPC Field Dictionary.

[TransferOfferGeomObject] The "TransferOfferGeomObject" attribute of the advertised fields. This setting applies
to all the fields advertised in this call. NUOPC controls the vocabulary of this attribute. Valid options are "will
provide", "can provide", "cannot provide". If omitted, the default is "will provide".

[SharePolicyField] The "SharePolicyField" attribute of the advertised fields. This setting applies to all the fields
advertised in this call. NUOPC controls the vocabulary of this attribute. Valid options are "share", and "not
share". If omitted, the default is "not share".

[SharePolicyGeomObject] The "SharePolicyGeomObject" attribute of the advertised fields. This setting applies to
all the fields advertised in this call. NUOPC controls the vocabulary of this attribute. Valid options are "share",
and "not share". If omitted, the default is equal to SharePolicyField.

[vm] If present, the Field objects used during advertising are created on the specified ESMF_VM object. The default
is to create the Field objects on the VM of the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.5 NUOPC_AdjustClock - Adjust the timestep in a clock

INTERFACE:

subroutine NUOPC_AdjustClock(clock, maxTimestep, rc)

ARGUMENTS:

type(ESMF_Clock) :: clock

type(ESMF_TimeInterval), intent(in), optional :: maxTimestep

integer, intent(out), optional :: rc

DESCRIPTION:

Adjust the clock to have a potentially smaller timestep. The timestep on the incoming clock object is compared to
the maxTimestep, and reset to the smaller of the two.

The arguments are:

104

clock The clock to be adjusted.

[maxTimestep] Upper bound of the timestep allowed in clock.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.6 NUOPC_CheckSetClock - Check a Clock for compatibility and set its values

INTERFACE:

subroutine NUOPC_CheckSetClock(setClock, checkClock, setStartTimeToCurrent, &

currTime, forceCurrTime, checkTimeStep, forceTimeStep, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: setClock

type(ESMF_Clock), intent(in) :: checkClock

logical, intent(in), optional :: setStartTimeToCurrent

type(ESMF_Time), intent(in), optional :: currTime

logical, intent(in), optional :: forceCurrTime

logical, intent(in), optional :: checkTimeStep

logical, intent(in), optional :: forceTimeStep

integer, intent(out), optional :: rc

DESCRIPTION:

By default compare setClock to checkClock to ensure they match in their current time. Further ensure that
the timeStep of checkClock is a multiple of the timeStep of setClock. If both conditions are satisfied then the
stopTime of the setClock is set one checkClock timeStep, or setClock runDuration, ahead of the current
time, which ever is shorter. The direction of checkClock is considered when setting the stopTime.

By default the startTime of the setClock is not modified. However, if setStartTimeToCurrent == .true.

the startTime of setClock is set to the currentTime of checkClock.

The arguments are:

setClock The ESMF_Clock object to be checked and set.

checkClock The reference clock object.

[setStartTimeToCurrent] If .true. then also set the startTime in setClock according to the startTime in
checkClock. The default is .false..

[currTime] If provided, use currTime instead of checkClock when checking or setting the current time of
setClock.

[forceCurrTime] If .true. then do not check the current time of the setClock, but instead force it to align with
the checkClock, or currTime, if it was provided. The default is .false..

[checkTimeStep] If .true. then check that timeStep of the setClock can reach the next increment on the
checkClock by an integer number of steps. For .false. do not check this condition. The default is
.true..

105

[forceTimeStep] If .true. then do not use the timeStep of the setClock to check if the next increment on the
checkClock can be reached in an integer number of steps. Instead set the timeStep of the setClock to
the timeStep of the checkClock. The default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.7 NUOPC_GetAttribute - Get the value of a NUOPC Field Attribute

INTERFACE:

! Private name; call using NUOPC_GetAttribute()

subroutine NUOPC_GetAttributeFieldVal(field, name, value, isPresent, isSet, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

character(*), intent(in) :: name

character(*), intent(out) :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: rc

DESCRIPTION:

Access the attribute name inside of field using the convention NUOPC and purpose Instance.

Unless isPresent and isSet are provided, return with error if the Attribute is not present or not set, respectively.

The arguments are:

field The ESMF_Field object to be queried.

name The name of the queried attribute.

value The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.8 NUOPC_GetAttribute - Get the typekind of a NUOPC Field Attribute

INTERFACE:

106

! Private name; call using NUOPC_GetAttribute()

subroutine NUOPC_GetAttributeFieldTK(field, name, isPresent, isSet, &

itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

character(*), intent(in) :: name

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

DESCRIPTION:

Query the typekind of the attribute name inside of field using the convention NUOPC and purpose Instance.

Unless isPresent and isSet are provided, return with error if the Attribute is not present or not set, respectively.

The arguments are:

field The ESMF_Field object to be queried.

name The name of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.9 NUOPC_GetAttribute - Get the value of a NUOPC State Attribute

INTERFACE:

! Private name; call using NUOPC_GetAttribute()

subroutine NUOPC_GetAttributeState(state, name, value, isPresent, isSet, &

itemCount, typekind, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(*), intent(in) :: name

character(*), intent(out), optional :: value

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isSet

integer, intent(out), optional :: itemCount

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

107

DESCRIPTION:

Access the attribute name inside of state using the convention NUOPC and purpose Instance. Returns with error
if the attribute is not present or not set.

Unless isPresent and isSet are provided, return with error if the Attribute is not present or not set, respectively.

The arguments are:

state The ESMF_State object to be queried.

name The name of the queried attribute.

[value] The value of the queried attribute.

[isPresent] Set to .true. if the queried attribute is present, .false. otherwise.

[isSet] Set to .true. if the queried attribute is set, .false. otherwise.

[itemCount] Number of items in the attribute. Return 0 if not present or not set.

[typekind] The typekind of the queried attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.10 NUOPC_GetStateMemberLists - Build lists of information of State members

INTERFACE:

subroutine NUOPC_GetStateMemberLists(state, StandardNameList, &

ConnectedList, NamespaceList, CplSetList, itemNameList, fieldList, &

stateList, nestedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(ESMF_MAXSTR), pointer, optional :: StandardNameList(:)

character(ESMF_MAXSTR), pointer, optional :: ConnectedList(:)

character(ESMF_MAXSTR), pointer, optional :: NamespaceList(:)

character(ESMF_MAXSTR), pointer, optional :: CplSetList(:)

character(ESMF_MAXSTR), pointer, optional :: itemNameList(:)

type(ESMF_Field), pointer, optional :: fieldList(:)

type(ESMF_State), pointer, optional :: stateList(:)

logical, intent(in), optional :: nestedFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Construct lists containing the StandardNames, field names, and connected status of the fields in state. Return this
information in the list arguments. Recursively parse through nested States.

108

All pointer arguments present must enter this method unassociated. This means that the user code must explicitly
call nullify() or use the => null() syntax on the variables passed in as any of the pointer arguments. On
return, the pointer arguments may either be unassociated or associated. Consequently the user code must first check
the status of any of the returned pointer arguments via the associated() intrinsic before accessing the argument.
The responsibility for deallocation of associated pointer arguments transfers to the caller.

The arguments are:

state The ESMF_State object to be queried.

[StandardNameList] If present, return a list of the "StandardName" attribute of each member. See the note about
pointer arguments in the description section above for correct usage.

[ConnectedList] If present, return a list of the "Connected" attribute of each member. See the note about pointer
arguments in the description section above for correct usage.

[NamespaceList] If present, return a list of the "Namespace" attribute of each member. See the note about pointer
arguments in the description section above for correct usage.

[CplSetList] If present, return a list of the "CplSet" attribute of each member. See the note about pointer arguments
in the description section above for correct usage.

[itemNameList] If present, return a list of each member name. See the note about pointer arguments in the description
section above for correct usage.

[fieldList] If present, return a list of the member fields. See the note about pointer arguments in the description section
above for correct usage.

[stateList] If present, return a list of the states corresonding to the owner of the fields returned under fieldList.
See the note about pointer arguments in the description section above for correct usage.

[nestedFlag] When set to .true., returns information from nested States (default). When set to .false., returns infor-
mation at the current State level only.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.11 NUOPC_GetStateMemberCount - Determing number of State members

INTERFACE:

subroutine NUOPC_GetStateMemberCount(state, fieldCount, nestedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

integer, intent(out), optional :: fieldCount

logical, intent(in), optional :: nestedFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Determine the number of fields in state. By default recursively parse through nested States.

The arguments are:

109

state The ESMF_State object to be queried.

[fieldCount] Number of fields.

[nestedFlag] When set to .true., returns information from nested States (default). When set to .false., returns infor-
mation at the current State level only.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.12 NUOPC_GetTimestamp - Get the timestamp of a Field

INTERFACE:

subroutine NUOPC_GetTimestamp(field, isValid, time, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

logical, intent(out), optional :: isValid

type(ESMF_Time), intent(out), optional :: time

integer, intent(out), optional :: rc

DESCRIPTION:

Access the timestamp on field in form of an ESMF_Time object.

The arguments are:

field The ESMF_Field object to be checked.

[isValid] Set to .true. if the timestamp is valid, .false. otherwise.

[time] The timestamp as ESMF_Time object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.13 NUOPC_IngestPetList - Ingest a petList from FreeFormat

INTERFACE:

! Private name; call using NUOPC_IngestPetList()

subroutine NUOPC_IngestPetListFF(petList, freeFormat, rc)

ARGUMENTS:

110

integer, allocatable, intent(out) :: petList(:)

type(NUOPC_FreeFormat), intent(in), target :: freeFormat

integer, intent(out), optional :: rc

DESCRIPTION:

Construct a petList from a FreeFormat object.

The arguments are:

petList The constructed petList. The size and content is set by this method.

freeFormat The incoming petList information in free format. The format supports two types of elements:

• Single PET elements consist of a single number referring to the PET.

• Block elements consist of two PET numbers, separated by a "-" character. No white spaces are accepted
between the dash and the PET numbers. A block element includes all of the PETs between the lower
bound (left PET number), and the upper bound (right PET number), bounds inclusive. The upper bound
must not be less than the lower bound.

Any number of elements may be listed in the free format. The idividual elements are separated by white spaces.

For an example, the free format petList definition

"2-5 12 0 15-23"

would translate into a petList output of

(/2, 3, 4, 5, 12, 0, 15, 16, 17, 18, 19, 20, 21, 22, 23/)

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.14 NUOPC_IngestPetList - Ingest a petList from HConfig

INTERFACE:

! Private name; call using NUOPC_IngestPetList()

subroutine NUOPC_IngestPetListHC(petList, hconfig, rc)

ARGUMENTS:

integer, allocatable, intent(out) :: petList(:)

type(ESMF_HConfig), intent(in) :: hconfig

integer, intent(out), optional :: rc

DESCRIPTION:

Construct a petList from a HConfig object.

The arguments are:

111

petList The constructed petList. The size and content is set by this method.

hconfig The incoming petList information as HConfig. The provided hconfig must be a scalar, or a list of
lists and scalars. The input is recursively processed, and each scalar fed into the FreeFormat version of the
NUOPC_IngestPetList() interface as a single string. The resulting petList is the union of all PETs
determined by all of the elements contained in hconfig.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.15 NUOPC_IsAtTime - Check if a Field is at the given Time

INTERFACE:

! Private name; call using NUOPC_IsAtTime()

function NUOPC_IsAtTimeField(field, time, rc)

RETURN VALUE:

logical :: NUOPC_IsAtTimeField

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

type(ESMF_Time), intent(in) :: time

integer, intent(out), optional :: rc

DESCRIPTION:

Returns .true. if field has a timestamp that matches time. Otherwise returns .false.. On PETs with only a
proxy instance of the field, .true. is returned regardless of the actual timestamp.

The arguments are:

field The ESMF_Field object to be checked.

time The time to compare against.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.16 NUOPC_IsAtTime - Check if Field(s) in a State are at the given Time

INTERFACE:

! Private name; call using NUOPC_IsAtTime()

function NUOPC_IsAtTimeState(state, time, fieldName, count, fieldList, rc)

112

RETURN VALUE:

logical :: NUOPC_IsAtTimeState

ARGUMENTS:

type(ESMF_State), intent(in) :: state

type(ESMF_Time), intent(in) :: time

character(*), intent(in), optional :: fieldName

integer, intent(out), optional :: count

type(ESMF_Field), allocatable, intent(out), optional :: fieldList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the field(s) in state have a timestamp that matches time. Otherwise return .false..

The arguments are:

state The ESMF_State object to be checked.

time The time to compare against.

[fieldName] The name of the field in state to be checked. If provided, and the state does not contain a field with
fieldName, return an error in rc. If not provided, check all the fields contained in state and return .true.
if all the fields are at the correct time.

[count] If provided, the number of fields that are at time are returned. If fieldName is present then count cannot
be greater than 1.

[fieldList] If provided, the fields that are not at time are returned. If fieldName is present then fieldList can
contain a maximum of 1 field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.17 NUOPC_IsConnected - Check if a Field is connected

INTERFACE:

! Private name; call using NUOPC_IsConnected()

function NUOPC_IsConnectedField(field, rc)

RETURN VALUE:

logical :: NUOPC_IsConnectedField

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

integer, intent(out), optional :: rc

113

DESCRIPTION:

Return .true. if the field is connected. Otherwise return .false..

The arguments are:

field The ESMF_Field object to be checked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.18 NUOPC_IsConnected - Check if Field(s) in a State are connected

INTERFACE:

! Private name; call using NUOPC_IsConnected()

function NUOPC_IsConnectedState(state, fieldName, count, rc)

RETURN VALUE:

logical :: NUOPC_IsConnectedState

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(*), intent(in), optional :: fieldName

integer, intent(out), optional :: count

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the field(s) in state are connected. Otherwise return .false..

The arguments are:

state The ESMF_State object to be checked.

[fieldName] The name of the field in state to be checked. If provided, and the state does not contain a field with
fieldName, return an error in rc. If not provided, check all the fields contained in state and return .true.
if all the fields are connected.

[count] If provided, the number of fields that are connected are returned. If fieldName is present then count

cannot be greater than 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

114

3.9.19 NUOPC_IsUpdated - Check if a Field is marked as updated

INTERFACE:

! Private name; call using NUOPC_IsUpdated()

function NUOPC_IsUpdatedField(field, rc)

RETURN VALUE:

logical :: NUOPC_IsUpdatedField

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the field has its "Updated" attribute set to "true". Otherwise return .false..

The arguments are:

field The ESMF_Field object to be checked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.20 NUOPC_IsUpdated - Check if Field(s) in a State are marked as updated

INTERFACE:

! Private name; call using NUOPC_IsUpdated()

function NUOPC_IsUpdatedState(state, fieldName, count, rc)

RETURN VALUE:

logical :: NUOPC_IsUpdatedState

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(*), intent(in), optional :: fieldName

integer, intent(out), optional :: count

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the field(s) in state have the "Updated" attribute set to "true". Otherwise return .false..

The arguments are:

115

state The ESMF_State object to be checked.

[fieldName] The name of the field in state to be checked. If provided, and the state does not contain a field with
fieldName, return an error in rc. If not provided, check all the fields contained in state and return .true.
if all the fields are updated.

[count] If provided, the number of fields that are updated are returned. If fieldName is present then count cannot
be greater than 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.21 NUOPC_NoOp - No-Operation attachable method for GridComp

INTERFACE:

subroutine NUOPC_NoOp(gcomp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

integer, intent(out) :: rc

DESCRIPTION:

No-Op method with an interface that matches the requirements for a attachable method for ESMF_GridComp objects.

The arguments are:

gcomp The ESMF_GridComp object to which this method is attached.

rc Return code; equals ESMF_SUCCESS if there are no errors.

3.9.22 NUOPC_Realize - Realize previously advertised Fields inside a State on a single Grid with internal

allocation

INTERFACE:

! Private name; call using NUOPC_Realize()

subroutine NUOPC_RealizeCompleteG(state, grid, fieldName, typekind, &

staggerloc, selection, dataFillScheme, field, rc)

ARGUMENTS:

116

type(ESMF_State) :: state

type(ESMF_Grid), intent(in) :: grid

character(*), intent(in), optional :: fieldName

type(ESMF_TypeKind_Flag), intent(in), optional :: typekind

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

character(len=*), intent(in), optional :: selection

character(len=*), intent(in), optional :: dataFillScheme

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Realize or remove fields inside of state according to selection. All of the fields that are realized are created
internally on the same grid object, allocating memory for as many field dimensions as there are grid dimensions.

The type and kind of the created fields is according to argument typekind.

Realized fields are filled with data according to the dataFillScheme argument.

The arguments are:

state The ESMF_State object in which the fields are realized.

grid The ESMF_Grid object on which to realize the fields.

[fieldName] The name of the field in state to be realized, or removed, according to selection. If provided, and
the state does not contain a field with name fieldName, return an error in rc. If not provided, realize all the
fields contained in state according to selection.

[typekind] The typekind of the internally created field(s). The valid options are ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4, and ESMF_TYPEKIND_R8. By default use the typekind
of the partially created field used during advertise, or ESMF_TYPEKIND_R8, if the advertised field did not
have a typekind defined.

[staggerloc] Stagger location of data in grid cells. By default use the same stagger location as the advertising field,
or ESMF_STAGGERLOC_CENTER if the advertising field was created empty.

[selection] Selection of mode of operation:

• "realize_all" (default)

• "realize_connected_remove_others"

• "realize_connected+provide_remove_others"

[dataFillScheme] Realized fields will be filled according to the selected fill scheme. See ESMF_FieldFill() for
fill schemes. Default is to leave the data in realized fields uninitialized.

[field] Returns the completed field that was realized by this method. This option is only supported if also argument
fieldName was specified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

117

3.9.23 NUOPC_Realize - Realize previously advertised Fields inside a State on a single LocStream with inter-

nal allocation

INTERFACE:

! Private name; call using NUOPC_Realize()

subroutine NUOPC_RealizeCompleteLS(state, locstream, fieldName, typekind, selection,&

dataFillScheme, field, rc)

ARGUMENTS:

type(ESMF_State) :: state

type(ESMF_LocStream), intent(in) :: locstream

character(*), intent(in), optional :: fieldName

type(ESMF_TypeKind_Flag), intent(in), optional :: typekind

character(len=*), intent(in), optional :: selection

character(len=*), intent(in), optional :: dataFillScheme

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Realize or remove fields inside of state according to selection. All of the fields that are realized are created
internally on the same locstream object, allocating memory accordingly.

The type and kind of the created fields is according to argument typekind.

Realized fields are filled with data according to the dataFillScheme argument.

The arguments are:

state The ESMF_State object in which the fields are realized.

locstream The ESMF_LocStream object on which to realize the fields.

[fieldName] The name of the field in state to be realized, or removed, according to selection. If provided, and
the state does not contain a field with name fieldName, return an error in rc. If not provided, realize all the
fields contained in state according to selection.

[typekind] The typekind of the internally created field(s). The valid options are ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4, and ESMF_TYPEKIND_R8. By default use the typekind
of the partially created field used during advertise, or ESMF_TYPEKIND_R8, if the advertised field did not
have a typekind defined.

[selection] Selection of mode of operation:

• "realize_all" (default)

• "realize_connected_remove_others"

[dataFillScheme] Realized fields will be filled according to the selected fill scheme. See ESMF_FieldFill() for
fill schemes. Default is to leave the data in realized fields uninitialized.

[field] Returns the completed field that was realized by this method. This option is only supported if also argument
fieldName was specified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

118

3.9.24 NUOPC_Realize - Realize previously advertised Fields inside a State on a single Mesh with internal

allocation

INTERFACE:

! Private name; call using NUOPC_Realize()

subroutine NUOPC_RealizeCompleteM(state, mesh, fieldName, typekind, &

meshloc, selection, dataFillScheme, field, rc)

ARGUMENTS:

type(ESMF_State) :: state

type(ESMF_Mesh), intent(in) :: mesh

character(*), intent(in), optional :: fieldName

type(ESMF_TypeKind_Flag), intent(in), optional :: typekind

type(ESMF_MeshLoc), intent(in), optional :: meshloc

character(len=*), intent(in), optional :: selection

character(len=*), intent(in), optional :: dataFillScheme

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Realize or remove fields inside of state according to selection. All of the fields that are realized are created
internally on the same mesh object, allocating memory accordingly.

The type and kind of the created fields is according to argument typekind.

Realized fields are filled with data according to the dataFillScheme argument.

The arguments are:

state The ESMF_State object in which the fields are realized.

mesh The ESMF_Mesh object on which to realize the fields.

[fieldName] The name of the field in state to be realized, or removed, according to selection. If provided, and
the state does not contain a field with name fieldName, return an error in rc. If not provided, realize all the
fields contained in state according to selection.

[typekind] The typekind of the internally created field(s). The valid options are ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4, and ESMF_TYPEKIND_R8. By default use the typekind
of the partially created field used during advertise, or ESMF_TYPEKIND_R8, if the advertised field did not
have a typekind defined.

[meshloc] Location of data in the mesh cell. By default use the same mesh location as the advertising field, or
ESMF_STAGGERLOC_NODE if the advertising field was created empty.

[selection] Selection of mode of operation:

• "realize_all" (default)

• "realize_connected_remove_others"

[dataFillScheme] Realized fields will be filled according to the selected fill scheme. See ESMF_FieldFill() for
fill schemes. Default is to leave the data in realized fields uninitialized.

119

[field] Returns the completed field that was realized by this method. This option is only supported if also argument
fieldName was specified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.25 NUOPC_Realize - Realize a previously advertised Field in a State

INTERFACE:

! Private name; call using NUOPC_Realize()

subroutine NUOPC_RealizeField(state, field, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

type(ESMF_Field), intent(in) :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Realize a previously advertised field in state by replacing the advertised field with field of the same name.

The arguments are:

state The ESMF_State object in which the fields are realized.

field The new field to put in place of the previously advertised (empty) field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.26 NUOPC_Realize - Realize a previously advertised Field in a State after Transfer of GeomObject

INTERFACE:

! Private name; call using NUOPC_Realize()

subroutine NUOPC_RealizeTransfer(state, fieldName, typekind, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, totalLWidth, totalUWidth, &

realizeOnlyConnected, removeNotConnected, realizeOnlyNotShared, &

realizeOnlyNotComplete, field, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(*), intent(in) :: fieldName

type(ESMF_TypeKind_Flag), intent(in), optional :: typekind

120

integer, target, intent(in), optional :: gridToFieldMap(:)

integer, target, intent(in), optional :: ungriddedLBound(:)

integer, target, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

logical, intent(in), optional :: realizeOnlyConnected

logical, intent(in), optional :: removeNotConnected

logical, intent(in), optional :: realizeOnlyNotShared

logical, intent(in), optional :: realizeOnlyNotComplete

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: rc

DESCRIPTION:

Realize a field where GeomObject has been set by the NUOPC GeomObject transfer protocol.

The data of the realized field is left uninitialized by this method.

The arguments are:

state The ESMF_State object in which the field is realized.

fieldName The name of the field in state to be realized. If state does not contain a field with name fieldName,
return an error in rc.

[typekind] The typekind of the internally created field(s). The valid options are ESMF_TYPEKIND_I4,
ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4, and ESMF_TYPEKIND_R8. By default use the typekind
of the connected provider field.

[gridToFieldMap] The mapping of grid/mesh dimensions against field dimensions. The argument is of rank 1 and
with a size of dimCount. The elements correspond to the grid/mesh elements in order, and associates it with the
indicated field dimension. Only entries between 1 and the field rank are allowed. There must be no duplicate
entries in gridToFieldMap. By default use the gridToFieldMap of the connected provider field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements defines the
number of ungridded dimensions of the field and must be consistent with ungriddedUBound. By default use
the ungriddedLBound of the connected provider field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements defines the
number of ungridded dimensions of the field and must be consistent with ungriddedLBound. By default use
the ungriddedLBound of the connected provider field.

[totalLWidth] This argument is only supported for fields defined on ESMF_Grid. The number elements out-
side the lower bound of the exclusive region. The argument is of rank 1 and with a size of dimCount, the
number of gridded dimensions of the field. The ordering of the dimensions is that of the field (considering
gridToFieldMap). By default a zero vector is used, resulting in no elements outside the exclusive region.

[totalUWidth] This argument is only supported for fields defined on ESMF_Grid. The number elements out-
side the upper bound of the exclusive region. The argument is of rank 1 and with a size of dimCount, the
number of gridded dimensions of the field. The ordering of the dimensions is that of the field (considering
gridToFieldMap). By default a zero vector is used, resulting in no elements outside the exclusive region.

[realizeOnlyConnected] If set to .false., realize the specified field irregardless of the connected status. If set to
.true., only a connected field will be realized. The default is .true..

[removeNotConnected] If set to .false., do not remove a field from the state due to its connected status. If set
to .true., remove the field if it is not connected. This requires realizeOnlyConnected to be .true.,
and a runtime error will be returned otherwise. The default is .true..

121

[realizeOnlyNotShared] If set to .false., realize the specified field irregardless of its shared status. If set to
.true., only a field that has "ShareStatusField" set to "not shared" will be realized. The default is .true..

[realizeOnlyNotComplete] If set to .false., realize the specified field irregardless of its complete status. If set to
.true., only a field that has not yet been completed will be realized. The default is .true..

[field] Returns the completed field that was realized by this method. An invalid field object will be returned if the
conditions were such that the field was not realized.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.27 NUOPC_SetAttribute - Set the value of a NUOPC Field Attribute

INTERFACE:

! Private name; call using NUOPC_SetAttribute()

subroutine NUOPC_SetAttributeField(field, name, value, rc)

ARGUMENTS:

type(ESMF_Field) :: field

character(*), intent(in) :: name

character(*), intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the attribute name inside of field using the convention NUOPC and purpose Instance.

The arguments are:

field The ESMF_Field object on which to set the attribute.

name The name of the set attribute.

value The value of the set attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.28 NUOPC_SetAttribute - Set the value of a NUOPC State Attribute

INTERFACE:

! Private name; call using NUOPC_SetAttribute()

subroutine NUOPC_SetAttributeState(state, name, value, rc)

122

ARGUMENTS:

type(ESMF_State) :: state

character(*), intent(in) :: name

character(*), intent(in) :: value

integer, intent(out), optional :: rc

DESCRIPTION:

Set the attribute name inside of state using the convention NUOPC and purpose Instance.

The arguments are:

state The ESMF_State object on which to set the attribute.

name The name of the set attribute.

value The value of the set attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.29 NUOPC_SetTimestamp - Set the TimeStamp on a Field

INTERFACE:

! Private name; call using NUOPC_SetTimestamp()

subroutine NUOPC_SetTimestampField(field, time, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Time), intent(in) :: time

integer, intent(out), optional :: rc

DESCRIPTION:

Set the TimeStamp according to time on field.

This call should rarely be needed in user written code.

The arguments are:

field The ESMF_Field object to be time stampped.

time The ESMF_Time object defining the TimeStamp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

123

3.9.30 NUOPC_SetTimestamp - Set the TimeStamp on Fields in a list

INTERFACE:

! Private name; call using NUOPC_SetTimestamp()

subroutine NUOPC_SetTimestampFieldList(fieldList, time, selective, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: fieldList(:)

type(ESMF_Time), intent(in) :: time

logical, intent(in), optional :: selective

integer, intent(out), optional :: rc

DESCRIPTION:

Set the TimeStamp according to time on field.

This call should rarely be needed in user written code.

The arguments are:

fieldList The list of ESMF_Field objects to be time stampped.

time The ESMF_Time object defining the TimeStamp.

[selective] If .true., then only set the TimeStamp on those fields for which the "Updated" attribute is equal to
"true". Otherwise set the TimeStamp on all the fields. Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.31 NUOPC_SetTimestamp - Set the TimeStamp on Fields in a list from Clock

INTERFACE:

! Private name; call using NUOPC_SetTimestamp()

subroutine NUOPC_SetTimestampFieldListClk(fieldList, clock, selective, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: fieldList(:)

type(ESMF_Clock), intent(in) :: clock

logical, intent(in), optional :: selective

integer, intent(out), optional :: rc

DESCRIPTION:

Set the TimeStamp according to time on field.

This call should rarely be needed in user written code.

The arguments are:

124

fieldList The list of ESMF_Field objects to be time stampped.

clock The ESMF_Clock object defining the TimeStamp by its current time.

[selective] If .true., then only set the TimeStamp on those fields for which the "Updated" attribute is equal to
"true". Otherwise set the TimeStamp on all the fields. Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.32 NUOPC_SetTimestamp - Set the TimeStamp on all the Fields in a State

INTERFACE:

! Private name; call using NUOPC_SetTimestamp()

subroutine NUOPC_SetTimestampState(state, time, selective, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

type(ESMF_Time), intent(in) :: time

logical, intent(in), optional :: selective

integer, intent(out), optional :: rc

DESCRIPTION:

Set the TimeStamp according to clock on all the fields in state. Depending on selective, all or only some
fields may be updated.

This call should rarely be needed in user written code. It is used by the generic Connector.

The arguments are:

state The ESMF_State object holding the fields to be time stampped.

time The ESMF_Time object defining the TimeStamp.

[selective] If .true., then only set the TimeStamp on those fields for which the "Updated" attribute is equal to
"true". Otherwise set the TimeStamp on all the fields. Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.9.33 NUOPC_SetTimestamp - Set the TimeStamp on all the Fields in a State from Clock

INTERFACE:

! Private name; call using NUOPC_SetTimestamp()

subroutine NUOPC_SetTimestampStateClk(state, clock, selective, rc)

125

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

type(ESMF_Clock), intent(in) :: clock

logical, intent(in), optional :: selective

integer, intent(out), optional :: rc

DESCRIPTION:

Set the TimeStamp according to clock on all the fields in state. Depending on selective, all or only some
fields may be updated.

This call should rarely be needed in user written code. It is used by the generic Connector.

The arguments are:

state The ESMF_State object holding the fields to be time stampped.

clock The ESMF_Clock object defining the TimeStamp by its current time.

[selective] If .true., then only set the TimeStamp on those fields for which the "Updated" attribute is equal to
"true". Otherwise set the TimeStamp on all the fields. Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.10 Auxiliary Routines

Auxiliary routines are provided with the NUOPC Layer as a convenience to the user. Typically more work is needed
on these methods before considering them NUOPC core functionality.

3.10.1 NUOPC_Write - Write a distributed interpolation matrix to file in SCRIP format

INTERFACE:

! Private name; call using NUOPC_Write()

subroutine NUOPC_SCRIPWrite(factorList, factorIndexList, fileName, &

relaxedflag, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(in), target :: factorList(:)

integer, intent(in), target :: factorIndexList(:,:)

character(*), intent(in) :: fileName

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Write the destributed interpolaton matrix provided by factorList and factorIndexList to a SCRIP formatted
NetCDF file. Each PET calls with its local list of factors and indices. The call then writes the distributed factors into
a single file. If the file already exists, the contents is replaced by this call.

The arguments are:

126

factorList The distributed factor list.

factorIndexList The distributed list of source and destination indices.

fileName The name of the file to be written to.

[relaxedflag] If .true., then no error is returned even if the call cannot write the file due to library limitations.
Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.10.2 NUOPC_Write - Write a distributed factorList to file

INTERFACE:

! Private name; call using NUOPC_Write()

subroutine NUOPC_FactorsWrite(factorList, fileName, rc)

ARGUMENTS:

real(ESMF_KIND_R8), pointer :: factorList(:)

character(*), intent(in) :: fileName

integer, intent(out), optional :: rc

DESCRIPTION:

THIS METHOD IS DEPRECATED. Use 3.10.1 instead.

Write the destributed factorList to file. Each PET calls with its local list of factors. The call then writes the
distributed factors into a single file. The order of the factors in the file is first by PET, and within each PET the PET-
local order is preserved. Changing the number of PETs for the same regrid operation will likely change the order of
factors across PETs, and therefore files written will differ.

The arguments are:

factorList The distributed factor list.

fileName The name of the file to be written to.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.10.3 NUOPC_Write - Write Field data to file

INTERFACE:

! Private name; call using NUOPC_Write()

subroutine NUOPC_FieldWrite(field, fileName, overwrite, status, timeslice, &

iofmt, relaxedflag, rc)

127

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

character(*), intent(in) :: fileName

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Write the data in field to file under the field’s "StandardName" attribute if supported by the iofmt.

The arguments are:

field The ESMF_Field object whose data is to be written.

fileName The name of the file to write to.

[overwrite] A logical flag, the default is .false., i.e., existing Field data may not be overwritten. If .true., the data
corresponding to each field’s name will be be overwritten. If the timeslice option is given, only data for the
given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF variable
with data which has a different shape.

[status] The file status. Valid options are ESMF_FILESTATUS_NEW, ESMF_FILESTATUS_OLD,
ESMF_FILESTATUS_REPLACE, and ESMF_FILESTATUS_UNKNOWN (default).

[timeslice] Time slice counter. Must be positive. The behavior of this option may depend on the setting of the
overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Supported options are ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF4P, and
ESMF_IOFMT_NETCDF4C. If not present, defaults to ESMF_IOFMT_NETCDF.

[relaxedflag] If .true., then no error is returned even if the call cannot write the file due to library limitations, or
because field does not contain any data. Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

3.10.4 NUOPC_Write - Write the Fields within a State to NetCDF files

INTERFACE:

128

! Private name; call using NUOPC_Write()

subroutine NUOPC_StateWrite(state, fieldNameList, fileNamePrefix, overwrite, &

status, timeslice, iofmt, relaxedflag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(len=*), intent(in), optional :: fieldNameList(:)

character(len=*), intent(in), optional :: fileNamePrefix

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Write the data of the fields contained in state to NetCDF files. Each field is written to an individual file using
its "StandardName" attribute as its NetCDF attribute. FieldBundle objects that are encountered within state are
traversed, and the contained fields are handled in the same manner as fields directly held by the state object.

The arguments are:

state The ESMF_State object containing the fields written.

[fieldNameList] List of names of the fields to be written. By default write all the fields in state.

[fileNamePrefix] File name prefix, common to all the files written.

[overwrite] A logical flag, the default is .false., i.e., existing file data may not be overwritten. If .true., the data
corresponding to each field’s name will be be overwritten. If the timeslice option is given, only data for the
given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF variable
with data which has a different shape.

[status] The file status. Valid options are ESMF_FILESTATUS_NEW, ESMF_FILESTATUS_OLD,
ESMF_FILESTATUS_REPLACE, and ESMF_FILESTATUS_UNKNOWN (default).

[timeslice] Time slice counter. Must be positive. The behavior of this option may depend on the setting of the
overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Supported options are ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF4P, and
ESMF_IOFMT_NETCDF4C. If not present, defaults to ESMF_IOFMT_NETCDF.

[relaxedflag] If .true., then no error is returned even if the call cannot write the file due to library limitations.
Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

129

3.10.5 NUOPC_Write - Write the Fields within a FieldBundle to NetCDF files

INTERFACE:

! Private name; call using NUOPC_Write()

subroutine NUOPC_FieldBundleWrite(fieldbundle, fieldNameList, fileNamePrefix, overwrite,

status, timeslice, iofmt, relaxedflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

character(len=*), intent(in), optional :: fieldNameList(:)

character(len=*), intent(in), optional :: fileNamePrefix

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

DESCRIPTION:

Write the data of the fields contained in fieldbundle to NetCDF files. Each field is written to an individual file
using its "StandardName" attribute as its NetCDF attribute.

The arguments are:

fieldbundle The ESMF_FieldBundle object containing the fields.

[fieldNameList] List of names of the fields to be written. By default write all the fields in fieldbundle.

[fileNamePrefix] File name prefix, common to all the files written.

[overwrite] A logical flag, the default is .false., i.e., existing Field data may not be overwritten. If .true., the data
corresponding to each field’s name will be be overwritten. If the timeslice option is given, only data for the
given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF variable
with data which has a different shape.

[status] The file status. Valid options are ESMF_FILESTATUS_NEW, ESMF_FILESTATUS_OLD,
ESMF_FILESTATUS_REPLACE, and ESMF_FILESTATUS_UNKNOWN (default).

[timeslice] Time slice counter. Must be positive. The behavior of this option may depend on the setting of the
overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Supported options are ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF4P, and
ESMF_IOFMT_NETCDF4C. If not present, defaults to ESMF_IOFMT_NETCDF.

130

[relaxedflag] If .true., then no error is returned even if the call cannot write the file due to library limitations.
Default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

131

4 Standardized Component Dependencies

DEPRECATION NOTICE: The mechanism described in this section for defining build dependencies between com-
ponents has been deprecated! The approach discussed here is based exclusively on GNU Makefiles. It has been
superseded by the functionality implemented in the ESMX Layer. The ESMX approach addresses all of the issues
discussed here, based on a more holistic solution. It includes a standard CMake based option, which is the recom-
mended approach for all new NUOPC projects.

Most of the NUOPC Layer deals with specifying the interaction between ESMF components within a running ESMF
application. ESMF provides several mechanisms of how an application can be made up of individual Components.
This chapter deals with reigning in the many options supported by ESMF and setting up a standard way for assembling
NUOPC compliant components into a working application.

ESMF supports single executable as well as some forms of multiple executable applications. Currently the NUOPC
Layer only addresses the case of single executable applications. While it is generally true that executing single exe-
cutable applications is easier and more widely supported than executing multiple executable applications, building a
single executable from multiple components can be challenging. This is especially true when the individual compo-
nents are supplied by different groups, and the assembly of the final application happens apart from the component
development. The purpose of standardizing component dependencies as part of the NUOPC Layer is to provide a
solution to the technical aspect of assembling applications built from NUOPC compliant components.

As with the other parts of the NUOPC Layer, the standardized component dependencies specify aspects that ESMF
purposefully leaves unspecified. Having a standard way to deal with component dependencies has several advantages.
It makes reading and understand NUOPC compliant applications more easily. It also provides a means to promote best
practices across a wide range of application systems. Ultimately the goal of standardizing the component dependencies
is to support "plug & build" between NUOPC compliant components and applications, where everything needed to
use a component by a upper level software layer is supplied in a standard way, ready to be used by the software.

There is one aspect of the standardized component dependency that affects the component code itself: The name of
the public set services entry point into a NUOPC compliant component must be called "SetServices". The only
exception to this rule are components that are written in C/C++ and made available for static linking. In this case,
because of lack of namespace protection, the SetServices part must be followed by a component specific suffix.
This will be discussed later in this chapter. For all other cases, unique namespaces exist that allow the entry point to
be called SetServices across all components.

Having standardized the name of the single public entry point into a component solves the issue of having to commu-
nicate its name to the software layer that intends to use the component. At the same time, limiting the public entry
point to a single accepted name does not remove any flexibility that is generally leveraged by ESMF applications.
Within the context of the NUOPC Layer, there is great flexibility designed into the initialize steps. Removing the need
to have to deal with alternative set services routines focuses and clarifies the NUOPC approach.

The remaining aspects of component dependency standardization all deal with build specific issues, i.e. how does
the software layer that uses a component compile and link against the component code. For now the NUOPC Layer
does not deal with the question on how the component itself is being built. Instead the focus is on the information
that a component must provide about itself, and the format of this information, in order to be usable by another piece
of software. This clear separation allows components to provide their own independent build system, which often
is critical to ensure bit-for-bit reproducibility. At the same time it does not prevent build systems to be connected
top-down if that is desirable.

Technically the problem of passing component specific build information up the build hierarchy is solved by using
GNU makefile fragments that allow every component to provide information in form of variables to the upper level
build system. The NUOPC Layer standardization requires that: Every component must provide a makefile fragment
that defines 6 variables:

ESMF_DEP_FRONT

ESMF_DEP_INCPATH

ESMF_DEP_CMPL_OBJS

ESMF_DEP_LINK_OBJS

132

http://earthsystemmodeling.org/esmx/

ESMF_DEP_SHRD_PATH

ESMF_DEP_SHRD_LIBS

The convention for makefile fragments is to provide them in files with a suffix of .mk. The NUOPC Layer currently
adds no further restriction to the name of the makefile fragment file of a component. There seems little gain in
standardizing the name of the NUOPC compliant makefile fragment of a component since the location must be made
available anyway, and adding the specific file name at the end of the supplied path does not appear inappropriate.

The meaning of the 6 makefile variables is defined in a manner that supports many different situations, ranging from
simple statically linked components to situations where components are made available in shared objects, not loaded
by the application until needed during runtime. The design idea of the NUOPC Layer component makefile fragment
is to have each component provide a simple makefile fragment that is self-describing. Usage of advanced options
requires a more sophisticated build system on the software layer that uses the component, while at the same time the
same standard format is able to keep simple situations simple.

An indepth understanding of the capabilities of the NUOPC Layer build dependency standard requires looking at
various common cases in detail. The remainder of this chapter is dedicated to this effort. Here a general definition of
each variable is provided.

• ESMF_DEP_FRONT - The name of the Fortran module to be used in a USE statement, or (if it ends in ".h") the
name of the header file to be used in an #include statement, or (if it ends in ".so") the name of the shared object
to be loaded at run-time.

• ESMF_DEP_INCPATH - The include path to find module or header files during compilation. Must be specified
as absolute path.

• ESMF_DEP_CMPL_OBJS - Object files that need to be considered as compile dependencies. Must be specified
with absolute path.

• ESMF_DEP_LINK_OBJS - Object files that need to be considered as link dependencies. Must be specified
with absolute path.

• ESMF_DEP_SHRD_PATH - The path or list of paths to find shared libraries during link-time (and during run-
time unless overridden by LD_LIBRARY_PATH). Must be specified as absolute paths.

• ESMF_DEP_SHRD_LIBS - Shared libraries that need to be specified during link-time, and must be available
during run-time. Must be specified with absolute path.

The following sections discuss how the standard makefile fragment is utilized in common use cases. It shows how the
.mk file would need to look like in these cases. Each section further contains hints of how a compliant .mk file can be
auto-generated by the component build system (provider side), as well as hints on how it can be used by an upper level
software layer (consumer side). Makefile segments provided in these hint sections are not part of the NUOPC Layer
component dependency standard. They are only provided here as a convenience to the user, showing best practices of
how the standard .mk files can be used in practice. Any specific compiler and linker flags shown in the hint sections
are those compliant with the GNU Compiler Collection.

The NUOPC Layer standard only covers the contents of the .mk file itself.

4.1 Fortran components that are statically built into the executable

Statically building a component into the executable requires that the associated files (object files, and for Fortran the
associated module files) are available when the application is being built. It makes the component code part of the
executable. A change in the component code requires re-compilation and re-linking of the executable.

A NUOPC compliant Fortran component that defines its public entry point in a module called "ABC", where all
component code is contained in a single object file called "abc.o", makes itself available by providing the following
.mk file:

133

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to associated ABC module file>

ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

If, however, the component implementation is spread across several object files (e.g. abc.o and xyz.o), they must all
be listed in the ESMF_DEP_LINK_OBJS variable:

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to associated ABC module file>

ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o <absolute path>/xyz.o

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

In cases that require a large number of object files to be linked into the executable it is often more convenient to provide
them in an archive file, e.g. "libABC.a". Archive files are also specified in ESMF_DEP_LINK_OBJS:

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to associated ABC module file>

ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/libABC.a

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

Hints for the provider side: A build rule for creating a compliant self-describing .mk file can be added to the
component’s makefile. For the case that component "ABC" is implemented in object files listed in variable "OBJS", a
build rule that produces "abc.mk" could look like this:

.PRECIOUS: %.o

%.mk : %.o

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = ABC" >> $@

@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_LINK_OBJS = "$(addprefix ‘pwd‘/, $(OBJS)) >> $@

@echo "ESMF_DEP_SHRD_PATH = " >> $@

@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk: $(OBJS)

Hints for the consumer side: The format of the NUOPC compliant .mk files allows the consumer side to collect
the information provided by multiple components into one set of internal variables. Notice that in the makefile code
below it is critical to use the := style assignment instead of a simple = in order to have the assignment be based on the
current value of the right hand variables.

include abc.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

134

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

include xyz.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XYZ=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

Besides the accumulation of information into the internal variables, there is a small amount of processing going on.
The module name provided by the ESMF_DEP_FRONT variable is assigned to a pre-processor macro. The intention
of this macro is to be used in a Fortran USE statement to access the Fortran module that contains the public access
point of the component.

The include paths in ESMF_DEP_INCPATH are prepended with the appropriate compiler flag (here "-I"). The
ESMF_DEP_SHRD_PATH and ESMF_DEP_SHRD_LIBS variables are also prepended by the respective compiler
and linker flags in case a component brings in a shared library dependencies.

Once the .mk files of all component dependencies have been included and processed in this manner, the internal
variables can be used in the build system of the application layer, as shown in the following example:

.SUFFIXES: .f90 .F90 .c .C

%.o : %.f90

$(ESMF_F90COMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) $(ESMF_F90COMPILEFREENOCPP) $<

%.o : %.F90

$(ESMF_F90COMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) $(ESMF_F90COMPILEFREECPP) \

$(ESMF_F90COMPILECPPFLAGS) $<

%.o : %.c

$(ESMF_CXXCOMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_CXXCOMPILEOPTS) $(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \

$(ESMF_CXXCOMPILECPPFLAGS) $<

%.o : %.C

$(ESMF_CXXCOMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_CXXCOMPILEOPTS) $(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \

$(ESMF_CXXCOMPILECPPFLAGS) $<

app: app.o appSub.o $(DEP_LINK_OBJS)

$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKPATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $^ $(DEP_SHRD_PATH) $(DEP_SHRD_LIBS) \

$(ESMF_F90ESMFLINKLIBS)

app.o: appSub.o

appSub.o: $(DEP_CMPL_OBJS)

135

4.2 Fortran components that are provided as shared libraries

Providing a component in form of a shared library requires that the associated files (object files, and for Fortran the
associated module files) are available when the application is being built. However, different from the statically linked
case, the component code does not become part of the executable, instead it will be loaded separately each time the
executable is loaded during start-up. This requires that the executable finds the component shared libraries, on which it
depends, during start-up. A change in the component code typically does not require re-compilation and re-linking of
the executable, instead a new version of the component shared library will be loaded automatically when it is available
at execution start-up.

A NUOPC compliant Fortran component that defines its public entry point in a module called "ABC", where all
component code is contained in a single shared library called "libABC.so", makes itself available by providing the
following .mk file:

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to associated ABC module file>

ESMF_DEP_CMPL_OBJS =

ESMF_DEP_LINK_OBJS =

ESMF_DEP_SHRD_PATH = <absolute path to libABC.so>

ESMF_DEP_SHRD_LIBS = libABC.so

Hints for the provider side: The following build rule will create a compliant self-describing .mk file ("abc.mk") for
a component that is made available as a shared library. The case assumes that component "ABC" is implemented in
object files listed in variable "OBJS".

.PRECIOUS: %.so

%.mk : %.so

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = ABC" >> $@

@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_CMPL_OBJS = " >> $@

@echo "ESMF_DEP_LINK_OBJS = " >> $@

@echo "ESMF_DEP_SHRD_PATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_SHRD_LIBS = "$* >> $@

abc.mk:

abc.so: $(OBJS)

$(ESMF_CXXLINKER) -shared -o $@ $<

mv $@ lib$@

rm -f $<

Hints for the consumer side: The format of the NUOPC compliant .mk files allows the consumer side to collect the
information provided by multiple components into one set of internal variables. This is independent on whether some
or all of the components are provided as shared libraries.

The path specified in ESMF_DEP_SHRD_PATH is required when building the executable in order for the linker to find
the shared library. Depending on the situation, it may be desirable to also encode this search path into the executable
through the RPATH mechanism as shown below. However, in some cases, e.g. when the actual shared library to be
used during execution is not available from the same location as during build-time, it may not be useful to encode the
RPATH. In either case, having set the LD_LIBRARY_PATH environment variable to the desired location of the shared
library at run-time will ensure that the correct library file is found.

Notice that in the makefile code below it is critical to use the := style assignment instead of a simple = in order to
have the assignment be based on the current value of the right hand variables.

136

include abc.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \

$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

(Here COMMA is a variable that contains a single comma which would cause syntax issues if it was written into the
"addprefix" command directly.)

The internal variables set by the above makefile code can then be used by exactly the same makefile rules shown for
the statically linked case. In fact, component "ABC" that comes in through "abc.mk" could either be a statically linked
component or a shared library component. The makefile code shown here for the consumer side handles both cases
alike.

4.3 Components that are loaded during run-time as shared objects

Making components available in the form of shared objects allows the executable to be built in the complete absence
of any information that depends on the component code. The only information required when building the executable
is the name of the shared object file that will supply the component code during run-time. The shared object file of
the component can be replaced at will, and it is not until run-time, when the executable actually tries to access the
component, that the shared object must be available to be loaded.

A NUOPC compliant component where all component code, including its public access point, is contained in a single
shared object called "abc.so", makes itself available by providing the following .mk file:

ESMF_DEP_FRONT = abc.so

ESMF_DEP_INCPATH =

ESMF_DEP_CMPL_OBJS =

ESMF_DEP_LINK_OBJS =

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

The other parts of the .mk file may be utilized in special cases, but typically the shared object should be self-contained.

It is interesting to note that at this level of abstraction, there is no more difference between a component written in
Fortran, and a component written in in C/C++. In both cases the public entry point available in the shared object
must be SetServices as required by the NUOPC Layer component dependency standard. (NUOPC does allow for
customary name mangling by the Fortran compiler.)

Hints for the provider side: The following build rule will create a compliant self-describing .mk file ("abc.mk") for
a component that is made available as a shared object. The case assumes that component "ABC" is implemented in
object files listed in variable "OBJS".

.PRECIOUS: %.so

%.mk : %.so

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = "$< >> $@

@echo "ESMF_DEP_INCPATH = " >> $@

@echo "ESMF_DEP_CMPL_OBJS = " >> $@

@echo "ESMF_DEP_LINK_OBJS = " >> $@

137

@echo "ESMF_DEP_SHRD_PATH = " >> $@

@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk:

abc.so: $(OBJS)

$(ESMF_CXXLINKER) -shared -o $@ $<

rm -f $<

Hints for the consumer side: The format of the NUOPC compliant .mk files still allows the consumer side to collect
the information provided by multiple components into one set of internal variables. This still holds when some or all
of the components are provided as shared objects. In fact it is very simple to make all of the component sections in the
consumer makefile handle both cases.

Notice that in the makefile code below it is critical to use the := style assignment instead of a simple = in order to
have the assignment be based on the current value of the right hand variables.

include abc.mk

ifneq (,$(findstring .so,$(ESMF_DEP_FRONT)))

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_SO_ABC=\"$(ESMF_DEP_FRONT)\"

else

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

endif

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \

$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

The above makefile segment supports component "ABC" that is described in "abc.mk" to be made available as
a Fortran static component, a Fortran shared library, or a shared object. The conditional around assigning vari-
able DEP_FRONTS either leads to having set the macro FRONT_ABC as before, or setting a different macro
FRONT_SO_ABC. The former indicates that a Fortran module is available for the component and requires a USE
statement in the code. The latter macro indicates that the component is made available through a shared object, and
the macro can be used to specify the name of the shared object in the associated call.

Again the internal variables set by the above makefile code can be used by the same makefile rules shown for the
statically linked case.

4.4 Components that depend on components

The NUOPC Layer supports component hierarchies where a component can be a child of another component. This
hierarchy of components translates into component build dependencies that must be dealt with in the NUOPC Layer
standardization of component dependencies.

A component that sits in an intermediate level of the component hierarchy depends on the components "below" while
at the same time it introduces a dependency by itself for the parent further "up" in the hierarchy. Within the NUOPC
Layer component dependency standard this means that the intermediate component functions as a consumer of its
child components’ .mk files, and as a provider of its own .mk file that is then consumed by its parent. In practice this
double role translates into passing link dependencies and shared library dependencies through to the parent, while the
front and compile dependency is simply defined my the intermediate component itself.

138

Consider a NUOPC compliant component that defines its public entry point in a module called "ABC", and where all
component code is contained in a single object file called "abc.o". Further assume that component "ABC" depends on
two components "XXX" and "YYY", where "XXX" provides the .mk file:

ESMF_DEP_FRONT = XXX

ESMF_DEP_INCPATH = <absolute path to the associated XXX module file>

ESMF_DEP_CMPL_OBJS = <absolute path>/xxx.o

ESMF_DEP_LINK_OBJS = <absolute path>/xxx.o

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

and "YYY" provides the following:

ESMF_DEP_FRONT = YYY

ESMF_DEP_INCPATH = <absolute path to the associated XXX module file>

ESMF_DEP_CMPL_OBJS =

ESMF_DEP_LINK_OBJS =

ESMF_DEP_SHRD_PATH = <absolute path to libYYY.so>

ESMF_DEP_SHRD_LIBS = libYYY.so

Then the .mk file provided by "ABC" needs to contain the following information:

ESMF_DEP_FRONT = ABC

ESMF_DEP_INCPATH = <absolute path to the associated ABC module file>

ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o <absolute path>/xxx.o

ESMF_DEP_SHRD_PATH = <absolute path to libYYY.so>

ESMF_DEP_SHRD_LIBS = libYYY.so

Hints for an intermediate component that is consumer and provider: For the consumer side it is convenient to
collect the information provided by multiple component dependencies into one set of internal variables. However,
the details on how some of the imported information is processed into the internal variables depends on whether the
intermediate component is going to make itself available for static or dynamic access.

In the static case all link and shared library dependencies must be passed to the next higher level, and these dependen-
cies should simply be collected and passed on to the next level:

include xxx.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XXX=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(ESMF_DEP_SHRD_PATH)

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(ESMF_DEP_SHRD_LIBS)

include yyy.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_YYY=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(ESMF_DEP_SHRD_PATH)

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(ESMF_DEP_SHRD_LIBS)

.PRECIOUS: %.o

139

%.mk : %.o

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = ABC" >> $@

@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< $(DEP_LINK_OBJS) >> $@

@echo "ESMF_DEP_SHRD_PATH = " $(DEP_SHRD_PATH) >> $@

@echo "ESMF_DEP_SHRD_LIBS = " $(DEP_SHRD_LIBS) >> $@

In the case where the intermediate component is linked into a dynamic library, or a dynamic object, all of its object
and shared library dependencies can be linked in. In this case it is more useful to do some processing on the shared
library dependencies, and not to include them in the produced .mk file.

include xxx.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XXX=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \

$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

include yyy.mk

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_YYY=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \

$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

.PRECIOUS: %.o

%.mk : %.o

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = ABC" >> $@

@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_SHRD_PATH = " >> $@

@echo "ESMF_DEP_SHRD_LIBS = " >> $@

4.5 Components written in C/C++

ESMF provides a basic C API that supports writing components in C or C++. There is currently no C version of
the NUOPC Layer API available, making it harder, but not impossible to write NUOPC Layer compliant ESMF
components in C/C++. For the sake of completeness, the NUOPC component dependency standardization does cover
the case of components being written in C/C++.

The issue of whether a component is written in Fortran or C/C++ only matters when the dependent software layer has a
compile dependency on the component. In other words, components that are accessed through a shared object have no
compile dependency, and the language is of no effect (see 4.3). However, components that are statically linked or made
available through shared libraries do introduce compile dependencies. These compile dependencies become language

140

dependent: a Fortran component must be accessed via the USE statement, while a component with a C interface must
be accessed via #include.

The decision between the three cases: compile dependency on a Fortran component, compile dependency on a C/C++
component, or no compile dependency can be made on the ESMF_DEP_FRONT variable. By default it is assumed
to contain the name of the Fortran module that provides the public entry point into a component written in Fortran.
However, if the contents of the ESMF_DEP_FRONT variable ends in .h, it is interpreted as the header file of a
component with a C interface. Finally, if it ends in .so, there is no compile dependency, and the component is
accessible through a shared object.

A NUOPC compliant component written in C/C++ that defines its public access point in "abc.h", where all component
code is contained in a single object file called "abc.o", makes itself available by providing the following .mk file:

ESMF_DEP_FRONT = abc.h

ESMF_DEP_INCPATH = <absolute path to abc.h>

ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o

ESMF_DEP_SHRD_PATH =

ESMF_DEP_SHRD_LIBS =

Hints for the implementor:

There are a few subtle complications to cover for the case where a component with C interface comes in as a compile
dependency. First there is Fortran name mangling of symbols which includes underscores, but also changes to lower
or upper case letters. The ESMF C interface provides a macro (FTN_X) that deals with the underscore issue on the
C component side, but it cannot address the lower/upper case issue. The ESMF convention for using C in Fortran
assumes all external symbols lower case. The NUOPC Layer follows this convention in accessing components with C
interface from Fortran.

Secondly, there is no namespace protection of the public entry points. For this reason, the public entry point cannot
just be setservices for all components written in C. Instead, for components with C interface, the public entry
point must be setservices_name, where "name" is the same as the root name of the header file specified in
ESMF_DEP_FRONT. (The absence of namespace protection is still an issue where multiple C components with the
same name are specified. This case requires that components are renamed to something more unique.)

Finally there is the issue of providing an explicit Fortran interface for the public entry point. One way of handling
this is to provide the explicit Fortran interface as part of the components header file. This is essentially a few lines
of Fortran code that can be used by the upper software layer to implement the explicit interface. As such it must be
protected from being processed by the C/C++ compiler:

#if (defined __STDC__ || defined __cplusplus)

// ---------- C/C++ block ------------

#include "ESMC.h"

extern "C" {

void FTN_X(setservices_abc)(ESMC_GridComp gcomp, int *rc);

}

#else

!! ---------- Fortran block ----------

interface

subroutine setservices_abc(gcomp, rc)

use ESMF

141

type(ESMF_GridComp) :: gcomp

integer, intent(out) :: rc

end subroutine

end interface

#endif

An upper level software layer that intends to use a component that comes with such a header file can then use it
directly on the Fortran side to make the component available with an explicit interface. For example, assuming the
macro FRONT_H_ATMF holds the name of the associated header file:

#ifdef FRONT_H_ATMF

module ABC

#include FRONT_H_ATMF

end module

#endif

This puts the explicit interface of the setservices_abc entry point into a module named "ABC". Except for this
small block of code, the C/C++ component becomes indistinguishable from a component implemented in Fortran.

Hints for the provider side: Adding a build rule for creating a compliant self-describing .mk file into the component’s
makefile is straightforward. For the case that the component in "abc.h" is implemented in object files listed in variable
"OBJS", a build rule that produces "abc.mk" could look like this:

.PRECIOUS: %.o

%.mk : %.o

@echo "# ESMF self-describing build dependency makefile fragment" > $@

@echo >> $@

@echo "ESMF_DEP_FRONT = abc.h" >> $@

@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@

@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< >> $@

@echo "ESMF_DEP_SHRD_PATH = " >> $@

@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk:

abc.o: abc.h

Hints for the consumer side: The format of the NUOPC compliant .mk files still allows the consumer side to collect
the information provided by multiple components into one set of internal variables. This still holds even when any of
the provided components could come in as a Fortran component for static linking, as a C/C++ component for static
linking, or as a shared object. All of the component sections in the consumer makefile can be made capable of handling
all three cases. However, if it is clear that a certain component is for sure supplied as one of these flavors, it may be
clearer to hard-code support for only one mechanism for this component.

Notice that in the makefile code below it is critical to use the := style assignment instead of a simple = in order to
have the assignment be based on the current value of the right hand variables.

This example shows how the section for a specific component can be made compatible with all component dependency
modes:

include abc.mk

142

ifneq (,$(findstring .h,$(ESMF_DEP_FRONT)))

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_H_ABC=\"$(ESMF_DEP_FRONT)\"

else ifneq (,$(findstring .so,$(ESMF_DEP_FRONT)))

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_SO_ABC=\"$(ESMF_DEP_FRONT)\"

else

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

endif

DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)

DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))

DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)

DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)

DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \

$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

The above makefile segment will end up setting macro FRONT_H_ABC to the header file name, if the component
described in "abc.mk" is a C/C++ component. It will instead set macro FRONT_SO_ABC to the shared object if this is
how the component is made available, or set macro FRONT_ABC to the Fortran module name if that is the mechanism
for gaining access to the component code. The calling code can use these macros to activate the corresponding code,
as well as has access to the required name string in each case

The internal variables set by the above makefile code can be used by the same makefile rules shown for the statically
linked case. This usage implements the correct dependency rules, and passes the macros through the compiler flags.

5 NUOPC Layer Compliance

The NUOPC Layer introduces a modeling system architecture based on Models, Mediators, Connectors, and Drivers.
The Layer defines the rules of engagement between these components. Many of these rules are formulated on the basis
of metadata. This metadata can be expected for compliance.

One of the challenges when inspecting a component for NUOPC Layer compliance is that many of the rules of
engagement are run-time rules. This means that they address the dynamical behavior of a component during run-time.
For this reason, comprehensive compliance testing cannot be done statically but requires the execution of code.

Currently there are two sets of tools available to address the issue of NUOPC Layer compliance testing. The Com-
pliance Checker is a runtime analysis tool that can be enabled by setting an ESMF environment variable at runtime.
When active, the Compliance Checker intercepts all interactions between components that go throught the ESMF
component interface, and analyzes them with respect to the NUOPC Layer rules of engagement. Warnings are printed
to the log files when issues or non-compliances are detected.

The Component Explorer is another compliance testing tool. It focuses on interacting with a single component, and
analyzing it during the early initialization phases. The Component Explorer and Compliance Checker are compatible
with each other and it is often useful to use them both at the same time.

5.1 The Compliance Checker

The NUOPC Compliance Checker is a run-time analysis tool that can be turned on for any ESMF application. The
Compliance Checker is turned off by default, as to not negatively affect performance critical runs. The Compliance
Checker is enabled by setting the following ESMF runtime environment variable:

ESMF_RUNTIME_COMPLIANCECHECK=ON

As a run-time variable, setting it does not require recompilation of the ESMF library or the user application. The same

143

executable and library will start to generate Compliance Checker output when the above variable is found set during
execution.

The function of the Compliance Checker is to intercept all interactions between the components of an ESMF applica-
tion, and to analyze them according to the NUOPC Layer rules of engagement. The following aspects are currently
reported on:

• Presence of the standard ESMF Initialize, Run, and Finalize methods and the number of phases in each.

• Timekeeping and whether it conforms with the NUOPC Layer rules.

• Fields or FieldBundles (not Arrays/ArrayBundles) being passed between Components.

• Details about the Fields being passed through import and export States.

• Component and Field metadata.

Besides the above aspects, the output of the Compliance Checker also provides a means to easily get an idea of the
exact dynamical control flow between the components of an application.

The Compliance Checker uses the ESMF Log facility to produce the compliance report during the execution of an
ESMF application. The output is located in the default ESMF Log files. There are advantages of using the existing
Log facility to generate the compliance report. First, the ESMF Log facility offers time stamping of messages, and
deals with all of the file access and multi-PET issues. Second, going through the ESMF Log guarantees that all the
output appears in the correct chronological order. This applies to all of the output, including entries from other ESMF
system levels or from the user level.

A sample output of the Compliance Checker output in action:

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:>START register compliance check.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: phase Zero for Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 5 phase(s) of Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 1 phase(s) of Run registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 1 phase(s) of Finalize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:>STOP register compliance check.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED:>START register compliance check.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: phase Zero for Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 3 phase(s) of Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 1 phase(s) of Run registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 1 phase(s) of Finalize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED:>STOP register compliance check.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM:>START register compliance check.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: phase Zero for Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 3 phase(s) of Initialize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 1 phase(s) of Run registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 1 phase(s) of Finalize registered.

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM:>STOP register compliance check.

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: >START InitializePrologue for phase= 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState name: modelComp 1 Import State

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState stateintent: ESMF_STATEINTENT_IMPORT

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState itemCount: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState name: modelComp 1 Export State

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState stateintent: ESMF_STATEINTENT_EXPORT

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState itemCount: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: the virtual memory used by this PET (in KB): 974868

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: the physical memory used by this PET (in KB): 49440

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: ESMF Fortran objects referenced by the ESMF garbage collection: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: ESMF objects (F & C++) referenced by the ESMF garbage collection: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: >STOP InitializePrologue for phase= 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: >START InitializeEpilogue for phase= 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: the virtual memory used by this PET (in KB): 974868

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: the physical memory used by this PET (in KB): 49448

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: ESMF Fortran objects referenced by the ESMF garbage collection: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: ESMF objects (F & C++) referenced by the ESMF garbage collection: 0

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: GridComp level attribute check: convention: ’NUOPC’, purpose: ’General’.

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ShortName> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <LongName> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <Description> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ModelType> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ReleaseDate> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <PreviousVersion> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ResponsiblePartyRole> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <Name> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <EmailAddress> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <PhysicalAddress> present but NOT set!

20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <URL> present but NOT set!

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <Verbosity> present and set: high

20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[1] present and set: IPDv02p1=1

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[2] present and set: IPDv02p3=2

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[3] present and set: IPDv02p4=3

144

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[4] present and set: IPDv02p5=5

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <NestingGeneration> present and set: 0

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <Nestling> present and set: 0

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState name: modelComp 1 Import State

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState stateintent: ESMF_STATEINTENT_IMPORT

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState itemCount: 0

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState name: modelComp 1 Export State

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState stateintent: ESMF_STATEINTENT_EXPORT

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState itemCount: 0

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: The incoming Clock was not modified.

20131108 172844.460 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> The internal Clock is not present!

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: >STOP InitializeEpilogue for phase= 0

All of the output generated by the Compliance Checker contains the string COMPLIANCECHECK, which can be used
to grep on. The checker currently generates two types of messages, INFO for general analysis output, and WARNING
for when issues with respect to the NUOPC Layer rules are detected.

In practice, when dealing with applications that have been componentized down to a very low level of the model,
the output generated by the Compliance Checker can become overwhelming. For this reason a depth parameter is
available that can be specified for the Compliance Checker environment variable:

ESMF_RUNTIME_COMPLIANCECHECK=ON:depth=4

This will limit the number of component levels that the Compliance Checker parses (here 4 levels), starting from the
top level application.

5.2 The Component Explorer

The NUOPC Component Explorer is a run-time tool that can be used to gain insight into a NUOPC Layer compli-
ant component, or to test a component’s compliance. The Component Explorer is currently available as a separate
download from the prototype repository:

https://github.com/esmf-org/nuopc-app-prototypes/tree/develop/AtmOcnProto

There are two parts to the Component Explorer. First the script nuopcExplorerScript is used to compile and
link the explorer application specifically against a specified component. This part of the explorer leverages and tests
the standardized component dependencies discussed in section 4. This step is initiated by calling the explorer script
with the component’s mk-file as an argument:

./nuopcExplorerScript <component-mk-file>

Any issues found during this step are reported. The successful completion of this step will produce an executable
called nuopcExplorerApp. Success is indicated by

SUCCESS: nuopcExplorerApp successfully built

...exiting nuopcExplorerScript.

and failure by

FAILURE: nuopcExplorerApp failed to build

...exiting nuopcExplorerScript.

The second part of the Component Explorer is the explorer application itself. It can either be built using the explorer
script as outlined above (recommended when a makefile fragment for the component is available) or by using the
makefile directly:

145

make nuopcExplorerApp

In the second case the resulting nuopcExplorerApp is not tied to a specific component, instead the executable
expects a component in form of a shared object to be specified as a command line argument when executing
nuopcExplorerApp. In either case the explorer application needs to be started according to the execution re-
quirements of the component it attempts to explore. This may mean that input files must be present, and that the
executable be launched on a sufficient number of processes. In terms of the common mpirun tool, launching of
nuopcExplorerApp may look like this

mpirun -np X ./nuopcExplorerApp

for an executable that was built against a specific component. Or like this

mpirun -np X ./nuopcExplorerApp <component-shared-object-file>

for an executable that expects a the component in form of a shared object.

The nuopcExplorerApp expects to find a configuration file by the name of explorer.config in the run
directory. The configuration file contains several basic model parameter used to explore the component. An example
configuration file is shown here:

NUOPC Component Explorer configuration file

start_year: 2009

start_month: 12

start_day: 01

start_hour: 00

start_minute: 0

start_second: 0

stop_year: 2009

stop_month: 12

stop_day: 03

stop_hour: 00

stop_minute: 0

stop_second: 0

step_seconds: 21600

filter_initialize_phases: no

enable_run: yes

enable_finalize: yes

The nuopcExplorerApp starts to interact with the specified component, using the information read in from the
configuration file. During the interaction the finding are reported to stdout, with output that will look similar to this:

NUOPC Component Explorer App

Exploring a component with a Fortran module front...

Model component # 1 InitializePhaseMap:

IPDv00p1=1

IPDv00p2=2

146

IPDv00p3=3

IPDv00p4=4

Model component # 1 // name = ocnA

ocnA: <LongName> : Attribute is present but NOT set!

ocnA: <ShortName> : Attribute is present but NOT set!

ocnA: <Description> : Attribute is present but NOT set!

ocnA: importState // itemCount = 2

ocnA: importState // item # 001 // [FIELD] name = pmsl

<StandardName> = air_pressure_at_sea_level

<Units> = Pa

<LongName> = Air Pressure at Sea Level

<ShortName> = pmsl

ocnA: importState // item # 002 // [FIELD] name = rsns

<StandardName> = surface_net_downward_shortwave_flux

<Units> = W m-2

<LongName> = Surface Net Downward Shortwave Flux

<ShortName> = rsns

ocnA: exportState // itemCount = 1

ocnA: exportState // item # 001 // [FIELD] name = sst

<StandardName> = sea_surface_temperature

<Units> = K

<LongName> = Sea Surface Temperature

<ShortName> = sst

Turning on the Compliance Checker (see section 5.1) will result in additional information in the log files.

147

6 Appendix A: Run Sequence Implementation

The NUOPC Driver utilizes an internal class to parametrize the run sequence. The NUOPC_RunSequence provides
a unified data structure that allows simple as well as complex time loops to be encoded and executed. There are entry
points that allow different run phases to be mapped against distinctly different time loops. Figure 2 depicts the data
structures surrounding the NUOPC_RunSequence, starting with the InternalState of the NUOPC_Driver generic
component.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...

...
...

...

...

integer::runPhaseToRunSeqMap(10)

modelComp(:)

..........

..........

..........

..........

..........

..........

..........

type(ESMF_CplComp),pointer::connectorComp(:,:)

..........

runSeq(:)

1

2

3

4

1

2

3

4

ru
n

P
h

as
eT

o
R

u
n

S
eq

M
ap

()

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

next
phase

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

co
n

n
ec

to
rC

o
m

p
(:

,:
)

0 1 2 3 4 5

0

1

2

3

4

5

4 53210
type(ESMF_GridComp), pointer::modelComp(:)

type(NUOPC_RunSequence), pointer::runSeq(:)

NUOPC_Driver :: InternalState

NUOPC_RunSequence

NUOPC_RunSequence

NUOPC_RunSequence

N_RE N_RE N_RE N_RE

N_RE N_RE

N_RE N_RE N_RE

i<0,next=>NULL()

i<0, next=>.not.NULL()

model component reference connector component reference ENDDO LINK

i>=0, j<
0

i>
=0

, j
>=

0

i, j

Figure 2: NUOPC_RunSequence class as it relates to the surrounding data structures.

148

7 Appendix B: Initialize Phase Definition Versions

IMPORTANT: Use of explicit Initialize Phase Definition versions and phase labels is deprecated - this section
is provided only for reference for NUOPC caps that still use the IPD syntax. See the section on Semantic
Specialization Labels for the preferred method of specializing NUOPC caps.

The interaction between NUOPC compliant components during the initialization process is regulated by the Initialize
Phase Definition or IPD. The IPDs are versioned, with a higher version number indicating backward compatibility
with all previous versions.

There are two perspectives of looking at the IPD. From the driver perspective the IPD regulates the sequence in
which it must call the different phases of the Initialize() routines of its child components. To this end the generic
NUOPC_Driver component implements support for IPDs up to a version specified in the API documentation.

The other angle of looking at the IPD is from the driver’s child components. From this perspective the IPD assigns
specific meaning to each initialize phase. The child components of a driver can be divided into two groups with
respect to the meaning the IPD assigns to each initialize phase. In one group are the model, mediator, and driver
components, and in the other group are the connector components. Child components publish their available initialize
phases through the InitializePhaseMap attribute.

The driver also calls into its own internal initialize methods. This allows the driver to participate in the initial-
ization of its children in a structured fashion. The internal initialization phases of a driver are published via the
InternalInitializePhaseMap attribute.

The following tables document the meaning of each initialization phase of the available IPD versions for the child
components and for the driver component itself. The phases are listed in the sequence in which the driver calls them.

IPDv00 label Component Meaning

IPDv00p1 driver-internal unspecified by NUOPC

IPDv00p1 models, mediators, drivers Advertise their import and export Fields.

IPDv00p1 connectors Construct their CplList Attribute.

IPDv00p2 driver-internal unspecified by NUOPC

IPDv00p2 models, mediators, drivers Realize their import and export Fields.

IPDv00p2a connectors Set the Connected Attribute on each import and export Field accord-

ing to the CplList Attribute. Reconcile the import and export States.

IPDv00p2b connectors Precompute the RouteHandle.

IPDv00p3 driver-internal unspecified by NUOPC

IPDv00p3 models, mediators, drivers Check for compatibility of their Fields’ Connected status.

IPDv00p4 driver-internal unspecified by NUOPC

IPDv00p4 models, mediators, drivers Handle Field data initialization. Timestamp their export Fields.

IPDv01 label Component Meaning

IPDv01p1 driver-internal unspecified by NUOPC

IPDv01p1 models, mediators, drivers Advertise their import and export Fields.

IPDv01p1 connectors Construct their CplList Attribute.

IPDv01p2 driver-internal Modify the CplList Attributes on the Connectors.

IPDv01p2 models, mediators, drivers unspecified/unused by NUOPC

IPDv01p2 connectors Set the Connected Attribute on each import and export Field accord-

ing to the CplList Attribute.

149

IPDv01p3 driver-internal unspecified by NUOPC

IPDv01p3 models, mediators, drivers Realize their "connected" import and export Fields.

IPDv01p3a connectors Reconcile the import and export States.

IPDv01p3b connectors Precompute the RouteHandle according to the CplList Attribute.

IPDv01p4 driver-internal unspecified by NUOPC

IPDv01p4 models, mediators, drivers Check for compatibility of their Fields’ Connected status.

IPDv01p5 driver-internal unspecified by NUOPC

IPDv01p5 models, mediators, drivers Handle Field data initialization. Timestamp their export Fields.

IPDv02 label Component Meaning

IPDv02p1 driver-internal unspecified by NUOPC

IPDv02p1 models, mediators, drivers Advertise their import and export Fields.

IPDv02p1 connectors Construct their CplList Attribute.

IPDv02p2 driver-internal Modify the CplList Attributes on the Connectors.

IPDv02p2 models, mediators, drivers unspecified/unused by NUOPC

IPDv02p2 connectors Set the Connected Attribute on each import and export Field accord-

ing to the CplList Attribute.

IPDv02p3 driver-internal unspecified by NUOPC

IPDv02p3 models, mediators, drivers Realize their "connected" import and export Fields.

IPDv02p3a connectors Reconcile the import and export States.

IPDv02p3b connectors Precompute the RouteHandle according to the CplList Attribute.

IPDv02p4 driver-internal unspecified by NUOPC

IPDv02p4 models, mediators, drivers Check for compatibility of their Fields’ Connected status.

IPDv02p5 driver-internal unspecified by NUOPC

IPDv02p5 models, mediators, drivers Handle Field data initialization. Timestamp their export Fields.

A loop is entered over all those model, mediator, driver Components that use IPDv02 and have

unsatisfied data dependencies, repeating the following two steps:

Run() connectors Loop over all Connectors that connect to the Component that is cur-

rently indexed by the outer loop.

IPDv02p5 models, mediators, drivers Handle Field data initialization. Timestamp their export Fields and set

the Updated and InitializeDataComplete Attributes accord-

ingly.

Repeat these two steps until all data dependencies have been statisfied, or a dead-lock situation

is detected.

IPDv03 label Component Meaning

IPDv03p1 driver-internal unspecified by NUOPC

IPDv03p1 models, mediators, drivers Advertise their import and export Fields and set the

TransferOfferGeomObject Attribute.

IPDv03p1 connectors Construct their CplList Attribute.

IPDv03p2 driver-internal Modify the CplList Attributes on the Connectors.

IPDv03p2 models, mediators, drivers unspecified/unused by NUOPC

150

IPDv03p2 connectors Set the Connected Attribute on each import and ex-

port Field according to the CplList Attribute. Set the

TransferActionGeomObject Attribute.

IPDv03p3 driver-internal unspecified by NUOPC

IPDv03p3 models, mediators, drivers Realize their "connected" import and export Fields that have

TransferActionGeomObject equal to "provide".

IPDv03p3 connectors Transfer the Grid/Mesh/LocStream objects (only DistGrid) for Field

pairs that have a provider and an acceptor side.

IPDv03p4 driver-internal unspecified by NUOPC

IPDv03p4 models, mediators, drivers Optionally modify the decomposition and distribution information of

the accepted Grid/Mesh/LocStream by replacing the DistGrid.

IPDv03p4 connectors Transfer the full Grid/Mesh/LocStream objects (with coordinates) for

Field pairs that have a provider and an acceptor side.

IPDv03p5 driver-internal unspecified by NUOPC

IPDv03p5 models, mediators, drivers Realize all Fields that have TransferActionGeomObject equal

to "accept" on the transferred Grid/Mesh/LocStream objects.

IPDv03p5a connectors Reconcile the import and export States.

IPDv03p5b connectors Precompute the RouteHandle according to the CplList Attribute.

IPDv03p6 driver-internal unspecified by NUOPC

IPDv03p6 models, mediators, drivers Check compatibility of their Fields’ Connected status.

IPDv03p7 driver-internal unspecified by NUOPC

IPDv03p7 models, mediators, drivers Handle Field data initialization. Timestamp the export Fields.

A loop is entered over all those model, mediator, driver Components that use IPDv02 and have

unsatisfied data dependencies, repeating the following two steps:

Run() connectors Loop over all Connectors that connect to the Component that is cur-

rently indexed by the outer loop.

IPDv03p7 models, mediators, drivers Handle Field data initialization. Time stamp the export Fields and set

the Updated and InitializeDataComplete Attributes accord-

ingly.

Repeat these two steps until all data dependencies have been statisfied, or a dead-lock situation

is detected.

IPDv04 label Component Meaning

IPDv04p1 driver-internal unspecified by NUOPC

IPDv04p1 models, mediators, drivers Advertise their import and export Fields and set the

TransferOfferGeomObject Attribute.

IPDv04p1a connectors Consider all connection possibilities for their CplList Attribute.

IPDv04p1b connectors Unambiguous construction of their CplList Attribute.

IPDv04p2 driver-internal Modify the CplList Attributes on the Connectors.

IPDv04p2 models, mediators, drivers unspecified/unused by NUOPC

IPDv04p2 connectors Set the Connected Attribute on each import and ex-

port Field according to the CplList Attribute. Set the

TransferActionGeomObject Attribute.

IPDv04p3 driver-internal unspecified by NUOPC

IPDv04p3 models, mediators, drivers Realize their "connected" import and export Fields that have

TransferActionGeomObject equal to "provide".

151

IPDv04p3 connectors Transfer the Grid/Mesh/LocStream objects (only DistGrid) for Field

pairs that have a provider and an acceptor side.

IPDv04p4 driver-internal unspecified by NUOPC

IPDv04p4 models, mediators, drivers Optionally modify the decomposition and distribution information of

the accepted Grid/Mesh/LocStream by replacing the DistGrid.

IPDv04p4 connectors Transfer the full Grid/Mesh/LocStream objects (with coordinates) for

Field pairs that have a provider and an acceptor side.

IPDv04p5 driver-internal unspecified by NUOPC

IPDv04p5 models, mediators, drivers Realize all Fields that have TransferActionGeomObject equal

to "accept" on the transferred Grid/Mesh/LocStream objects.

IPDv04p5a connectors Reconcile the import and export States.

IPDv04p5b connectors Precompute the RouteHandle according to the CplList Attribute.

IPDv04p6 driver-internal unspecified by NUOPC

IPDv04p6 models, mediators, drivers Check compatibility of their Fields’ Connected status.

IPDv04p7 driver-internal unspecified by NUOPC

IPDv04p7 models, mediators, drivers Handle Field data initialization. Timestamp the export Fields.

A loop is entered over all those model, mediator, driver Components that use IPDv02 and have

unsatisfied data dependencies, repeating the following two steps:

Run() connectors Loop over all Connectors that connect to the Component that is cur-

rently indexed by the outer loop.

IPDv04p7 models, mediators, drivers Handle Field data initialization. Time stamp the export Fields and set

the Updated and InitializeDataComplete Attributes accord-

ingly.

Repeat these two steps until all data dependencies have been statisfied, or a dead-lock situation

is detected.

IPDv05 label Component Meaning

IPDv05p1 driver-internal Advertise import and export Fields and set the

TransferOfferGeomObject Attribute. Optionally set

FieldTransferPolicy Attribute on States.

IPDv05p1 models, mediators, drivers Advertise their import and export Fields and set the

TransferOfferGeomObject Attribute. Optionally set

FieldTransferPolicy Attribute on States.

IPDv05p1 connectors Consider FieldTransferPolicy Attribute on import and export

States. Advertise Fields to be transferred.

IPDv05p2 driver-internal Optionally modify import and export States before connectors con-

struct CplList Attribute.

IPDv05p2 models, mediators, drivers Optionally modify import and export States before connectors con-

struct CplList Attribute.

IPDv05p2a connectors Consider all connection possibilities for their CplList Attribute.

IPDv05p2b connectors Unambiguous construction of their CplList Attribute.

IPDv05p3 driver-internal Modify the CplList Attributes on the Connectors.

IPDv05p3 models, mediators, drivers unspecified/unused by NUOPC

IPDv05p3 connectors Set the Connected Attribute on each import and ex-

port Field according to the CplList Attribute. Set the

TransferActionGeomObject Attribute.

152

IPDv05p4 driver-internal Realize "connected" import and export Fields that have

TransferActionGeomObject equal to "provide".

IPDv05p4 models, mediators, drivers Realize their "connected" import and export Fields that have

TransferActionGeomObject equal to "provide".

IPDv05p4 connectors Transfer the Grid/Mesh/LocStream objects (only DistGrid) for Field

pairs that have a provider and an acceptor side.

IPDv05p5 driver-internal Optionally modify the decomposition and distribution information of

the accepted Grid/Mesh/LocStream by replacing the DistGrid.

IPDv05p5 models, mediators, drivers Optionally modify the decomposition and distribution information of

the accepted Grid/Mesh/LocStream by replacing the DistGrid.

IPDv05p5 connectors Transfer the full Grid/Mesh/LocStream objects (with coordinates) for

Field pairs that have a provider and an acceptor side.

IPDv05p6 driver-internal Realize all Fields that have TransferActionGeomObject equal

to "accept" on the transferred Grid/Mesh/LocStream objects.

IPDv05p6 models, mediators, drivers Realize all Fields that have TransferActionGeomObject equal

to "accept" on the transferred Grid/Mesh/LocStream objects.

IPDv05p6a connectors Reconcile the import and export States.

IPDv05p6b connectors Precompute the RouteHandle according to the CplList Attribute.

IPDv05p7 driver-internal unspecified by NUOPC

IPDv05p7 models, mediators, drivers Check compatibility of their Fields’ Connected status.

IPDv05p8 driver-internal unspecified by NUOPC

IPDv05p8 models, mediators, drivers Handle Field data initialization. Timestamp the export Fields.

A loop is entered over all those model, mediator, driver Components that use IPDv02 and have

unsatisfied data dependencies, repeating the following two steps:

Run() connectors Loop over all Connectors that connect to the Component that is cur-

rently indexed by the outer loop.

IPDv05p8 models, mediators, drivers Handle Field data initialization. Time stamp the export Fields and set

the Updated and InitializeDataComplete Attributes accord-

ingly.

Repeat these two steps until all data dependencies have been statisfied, or a dead-lock situation

is detected.

7.1 NUOPC_Driver IPD implementation

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Ensure that the InitializePhaseMap and InternalInitializePhaseMap attributes are set
consistent with the available NUOPC Initialize Phase Definition (IPD) versions (see section 7 for a precise
definition). The default implementation uses IPDv02 for InitializePhaseMap, and sets

∗ IPDv02p1 (NUOPC PROVIDED)

∗ IPDv02p3 (NUOPC PROVIDED)

∗ IPDv02p5 (NUOPC PROVIDED).

The default implementation uses IPDv05 for InternalInitializePhaseMap, and sets

∗ IPDv05p1 (NUOPC PROVIDED)

∗ IPDv05p2 (NUOPC PROVIDED)

153

∗ IPDv05p3 (NUOPC PROVIDED)

∗ IPDv05p4 (NUOPC PROVIDED)

∗ IPDv05p6 (NUOPC PROVIDED)

∗ IPDv05p8 (NUOPC PROVIDED).

• phase 1: (REQUIRED, NUOPC PROVIDED)

– A default Initialize entry point for the higher level (e.g. application level) to initialize the Driver with a
single call.

– Internally calls into the InitializePhaseMap: IPDv02p1, IPDv02p3, IPDv02p5 phases in sequence.

• InitializePhaseMap: IPDv02p1 (NUOPC PROVIDED)

– Allocate and initialize internal data structures.

– If the internal clock is not yet set, set the default internal clock to be a copy of the incoming clock, but only
if the incoming clock is valid.

– Required specialization to set component services: label_SetModelServices.

∗ Call NUOPC_DriverAddComp() for all Model, Mediator, and Connector components to be added.

∗ Optionally replace the default clock.

– Create States for all of the child GridComps.

– Create Connectors to/from Driver component itself.

– Set default run sequence.

– Execute Initialize phase=0 for all Model, Mediator, and Connector components. This is the method where
each component is required to initialize its InitializePhaseMap Attribute.

– Optional specialization to analyze and modify the InitializePhaseMap Attribute of the child com-
ponents before the Driver uses it: label_ModifyInitializePhaseMap.

– Optional specialization to set run sequence: label_SetRunSequence.

– Drive the initialize sequence for the child components, compatible with up to IPDv05, as documented in
section 7, through IPDv05p3.

• InitializePhaseMap: IPDv02p3 (NUOPC PROVIDED)

– Continue to drive the initialize sequence for the child components, compatible with up to IPDv05, as
documented in section 7, through IPDv05p7.

• InitializePhaseMap: IPDv02p5 (NUOPC PROVIDED)

– Continue to drive the initialize sequence for the child components, compatible with up to IPDv05, as
documented in section 7, through IPDv05p8.

• InternalInitializePhaseMap: IPDv05p1 (NUOPC PROVIDED)

– Request that fields in export and import State of child components are mirrored onto the driver’s own
import and export States.

– This includes transferring the associated Grid, Mesh, or LocStream objects.

• InternalInitializePhaseMap: IPDv05p2 (NUOPC PROVIDED)

– Reset the request of field mirroring.

• InternalInitializePhaseMap: IPDv05p3 (NUOPC PROVIDED)

– Add the REMAPMETHOD=redist option to all entries in CplList attribute on all Connectors to/from
the driver itself.

154

– Optional specialization to modify the CplList attribute on all of the Connectors:
label_ModifyCplLists.

• InternalInitializePhaseMap: IPDv05p4 (NUOPC PROVIDED)

– Check that all connected fields in the driver’s own import and export State have a producer connection.

• InternalInitializePhaseMap: IPDv05p6 (NUOPC PROVIDED)

– Complete the allocation of all the fields in the driver’s own import and export State.

• InternalInitializePhaseMap: IPDv05p8 (NUOPC PROVIDED)

– Set the InitializeDataComplete consistent with the data-dependency protocol.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– If the incoming clock is valid, set the internal stop time to one time step interval on the incoming clock.

– Drive the time stepping loop, from current time to stop time, incrementing by time step.

∗ For each time step iteration the Model and Connector components Run() methods are being called
according to the run sequence.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Execute the Finalize() methods of all Connector components in order.

– Execute the Finalize() methods of all Model components in order.

– Optional specialization to finalize custom parts of the component: label_Finalize.

– Destroy all Model components and their import and export states.

– Destroy all Connector components.

– Internal clean-up.

7.2 NUOPC_ModelBase IPD implementation

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize the InitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 7 for a precise definition). The default implementation sets the following
mapping:

∗ IPDv00p1 = 1: (REQUIRED, IMPLEMENTOR PROVIDED)

∗ IPDv00p2 = 2: (REQUIRED, IMPLEMENTOR PROVIDED)

∗ IPDv00p3 = 3: (REQUIRED, IMPLEMENTOR PROVIDED)

∗ IPDv00p4 = 4: (REQUIRED, IMPLEMENTOR PROVIDED)

155

RUN:

• phase 1: (NUOPC PROVIDED)

– SPECIALIZATION REQUIRED/PROVIDED: label_SetRunClock to check and set the internal Clock
against the incoming Clock.

∗ IF (Phase specific specialization present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that internal
Clock and incoming Clock agree on current time and that the time step of the incoming Clock is a
multiple of the internal Clock time step. Under these conditions set the internal stop time to one time
step interval of the incoming Clock. Otherwise exit with error, flagging an incompatibility.

– SPECIALIZATION REQUIRED/PROVIDED: label_CheckImport to check Fields in the import State.

∗ IF (Phase specific specialization is present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that all import
Fields are at the current time of the internal Clock.

– Time stepping loop: starting at current time, running to stop time of the internal Clock.

∗ Timestamp the Fields in the export State according to the current time of the internal Clock.

∗ SPECIALIZATION REQUIRED: label_Advance to execute model or mediation code.

∗ SPECIALIZATION OPTIONAL: label_AdvanceClock to advance the current time of the internal
Clock. By default (without specialization) advance the current time of the internal Clock according to
the time step of the internal Clock.

– SPECIALIZATION OPTIONAL: label_TimestampExport to timestamp Fields in the export State.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specialization to finalize custom parts of the component: label_Finalize.

7.3 NUOPC_Model IPD implementation

INITIALIZE:

• phase 0: Set Initialize Phase Definition Version (REQUIRED, NUOPC PROVIDED)

– Initialize the InitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 7 for a precise definition). The default implementation sets the following
mapping:

∗ IPDv00p1 = 1: (REQUIRED, IMPLEMENTOR PROVIDED)

· Advertise Fields in import and export States.

∗ IPDv00p2 = 2: (REQUIRED, IMPLEMENTOR PROVIDED)

· Realize the advertised Fields in import and export States.

∗ IPDv00p3 = 3: (REQUIRED, NUOPC PROVIDED)

· Check compatibility of the Fields’ Connected status.

∗ IPDv00p4 = 4: (REQUIRED, NUOPC PROVIDED)

· Handle Field data initialization. Time stamp the export Fields.

156

• IPDv00p1, IPDv01p1, IPDv02p1, IPDv03p1, IPDv04p1, IPDv05p1: Advertise fields in import and export
States (REQUIRED, IMPLEMENTOR PROVIDED)

– Advertise fields in import/export states using one of the two NUOPC_Advertise methods (3.9.3,
3.9.4). The methods require Standard Names for each field, and the Standard Names must appear
in the NUOPC Field Dictionary or a runtime error is generated. NUOPC_Advertise accepts a
TransferOfferGeomObject argument which may be one of:

∗ “will provide” (default) - The field will provide its own geometric object (i.e., Grid, Mesh, or Loc-
Stream)

∗ “can provide”- The field can provide its own geometric object, but only if the connected field in the
other component will not provide it

∗ “cannot provide” - The field cannot provide its own geometric object. It must accept a geometric
object from a connected field.

See section 2.4.7 for more details about transferring geometric objects between NUOPC components.
Memory is not allocated for advertised fields, but attributes are set on the field which can be used in later
phases, especially for determining if another component can provide and/or consume the advertised field.

• IPDv00p2, IPDv01p3, IPDv02p3, IPDv03p3, IPDv04p3, IPDv05p4: Realize field providing a geometric object
(REQUIRED*, IMPLEMENTOR PROVIDED)

– Realize connected import and export fields that have their TransferActionGeomObject attribute set to “pro-
vide”, i.e., that will provide their own geometric object (i.e., Grid, Mesh, or LocStream). “provide” is the
default value of TransferActionGeomObject. Realize means an ESMF_Field object is created on a geo-
metric object and memory for the field is allocated or referenced.

The NUOPC_Realize methods (3.9.22, 3.9.23, 3.9.24, 3.9.25, 3.9.26) are used to realize fields. Only
previously advertised fields can be realized and the field’s name is used to search the state for the previously
advertised field.

*Note: This phase is not required if all fields are accepting a geometric object.

• IPDv03p4, IPDv04p4, IPDv05p5: Modify decomposition of accepted geometric object (OPTIONAL, IMPLE-
MENTOR PROVIDED)

– Optionally modify the decomposition information of any accepted geometric object by replacing the Dist-
Grid. In the case of the Grid geometric object, this can be accomplished by retrieving the Grid (and its
DistGrid) from the Field, creating a new DistGrid with modified decomposition, creating a new Grid on
the new (modified) DistGrid, and then using ESMF_FieldEmptySet to replace the existing Grid with
the new one.

This phase is useful when accepting a Grid from another component, but when the PET counts differ
between components. In this case, a new decomposition needs to be set based on the current processor
count.

• IPDv03p5, IPDv04p5, IPDv05p6: Realize fields accepting a geometric object (REQUIRED*, IMPLEMENTOR

PROVIDED)

– Realize connected import and export fields that have their TransferActionGeomObject attribute set to “ac-
cept”, i.e., that will accept a geometric object from a connected field in another component. If the generic
NUOPC_Connector is used, at this point the full geometric object has already been set in the field and
only a call to ESMF_FieldEmptyComplete is required to allocate memory for the field.

The NUOPC_Realize methods (3.9.22, 3.9.23, 3.9.24, 3.9.25, 3.9.26) are used to realize fields. Only
previously advertised fields can be realized and the field’s name is used to search the state for the previously
advertised field.

*Note: This phase is not required if all fields are providing a geometric object.

• IPDv00p3, IPDv01p4, IPDv02p4, IPDv03p6, IPDv04p6, IPDv05p7: Verify import fields connected and set
clock (NUOPC PROVIDED)

157

– If the model internal clock is found to be not set, then set the model internal clock as a copy of the incoming
clock.

– Optional specialization to set the internal clock and/or alarms: label_SetClock.

– Check compatibility, ensuring all advertised import Fields are connected.

• IPDv00p4, IPDv01p5: Initialize export fields (NUOPC PROVIDED)

– Optional specialization to initialize export Fields: label_DataInitialize

– Time stamp Fields in export State for compatibility checking.

• IPDv02p5, IPDv03p7, IPDv04p7, IPDv05p8: Initialize export fields (NUOPC PROVIDED)

– Optional specialization to initialize export Fields: label_DataInitialize

– Timestamp Fields in export State for compatibility checking.

– Set Component metadata used to resolve initialize data dependencies.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– SPECIALIZATION REQUIRED/PROVIDED: label_SetRunClock to check and set the internal Clock
against the incoming Clock.

∗ IF (Phase specific specialization present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that internal
Clock and incoming Clock agree on current time and that the time step of the incoming Clock is a
multiple of the internal Clock time step. Under these conditions set the internal stop time to one time
step interval of the incoming Clock. Otherwise exit with error, flagging an incompatibility.

– SPECIALIZATION REQUIRED/PROVIDED: label_CheckImport to check Fields in the import State.

∗ IF (Phase specific specialization is present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that all import
Fields are at the current time of the internal Clock.

– Time stepping loop: starting at current time, running to stop time of the internal Clock.

∗ Timestamp the Fields in the export State according to the current time of the internal Clock.

∗ SPECIALIZATION REQUIRED: label_Advance to execute model code.

∗ SPECIALIZATION OPTIONAL: label_AdvanceClock to advance the current time of the internal
Clock. By default (without specialization) advance the current time of the internal Clock according to
the time step of the internal Clock.

– SPECIALIZATION OPTIONAL/PROVIDED: label_TimestampExport to timestamp Fields in the ex-
port State.

∗ IF (Phase specific specialization present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: Timestamp all Fields in the export
State according to the current time of the internal Clock, which now is identical to the stop time of the
internal Clock.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specialization to finalize custom parts of the component: label_Finalize.

158

7.3.1 Initialize Phase Specialization - label_SetClock

OPTIONAL, IMPLEMENTOR PROVIDED

Called from: IPDv00p3, IPDv01p4, IPDv02p4, IPDv03p6, IPDv04p6, IPDv05p7

The specialization method can change aspects of the internal clock, which defaults to a copy of the incoming parent
clock. For example, the timeStep size may be changed and/or Alarms may be set on the clock.

The method NUOPC_CompSetClock(comp, externalClock, stabilityTimeStep) (3.6.38) can be
used to set the internal clock as a copy of externalClock, but with a timeStep that is less than or equal to the sta-
bilityTimeStep. At the same time it ensures that the timeStep of the external clock is a multiple of the timeStep of the
internal clock. If the stabilityTimeStep argument is not provided then the internal clock will simply be set as a copy
of the external clock.

7.3.2 Initialize Phase Specialization - label_DataInitialize

OPTIONAL, IMPLEMENTOR PROVIDED

Called from: IPDv00p4, IPDv01p5, IPDv02p5, IPDv03p7, IPDv04p7, IPDv05p8

The specialization method should initialize field data in the export state. Fields in the export state will be timestamped
automatically by the calling phase for all fields that have the “Updated” attribute set to “true”.

7.3.3 Run Phase Specialization - label_SetRunClock

REQUIRED, NUOPC PROVIDED

Called from: default run phase

A specialization method to check and set the internal clock against the incoming clock. This method is called by the
default run phase.

If not overridden, the default method will check that the internal clock and incoming clock agree on the current time
and that the time step of the incoming clock is a multiple of the internal clock time step. Under these conditions
set the internal stop time to one time step interval of the incoming clock. Otherwise exit with error, flagging an
incompatibility.

7.3.4 Run Phase Specialization - label_CheckImport

REQUIRED, NUOPC PROVIDED

Called from: default run phase

A specialization method to verify import fields before advancing in time. If not overridden, the default method verifies
that all import fields are at the current time of the internal clock.

7.3.5 Run Phase Specialization - label_Advance

REQUIRED, IMPLEMENTOR PROVIDED

Called from: default run phase

159

A specialization method that advances the model forward in time by one timestep of the internal clock. This method
will be called iteratively by the default run phase until reaching the stop time on the internal clock.

7.3.6 Run Phase Specialization - label_TimestampExport

REQUIRED, NUOPC PROVIDED

Called from: default run phase

A specialization method to set the timestamp on export fields after the model has advanced. If not overridden, the
default method sets the timestamp on all export fields to the stop time on the internal clock (which is also now the
current model time).

7.3.7 Finalize Phase Specialization - label_Finalize

OPTIONAL, IMPLEMENTOR PROVIDED

Called from: default finalize phase

An optional specialization method for custom finalization code and deallocations of user data structures.

7.4 NUOPC_Mediator IPD implementation

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize the InitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 7 for a precise definition). The default implementation sets the following
mapping:

∗ IPDv00p1 = 1: (REQUIRED, IMPLEMENTOR PROVIDED)

· Advertise Fields in import and export States.

∗ IPDv00p2 = 2: (REQUIRED, IMPLEMENTOR PROVIDED)

· Realize the advertised Fields in import and export States.

∗ IPDv00p3 = 3: (REQUIRED, NUOPC PROVIDED)

· Check compatibility of the Fields’ Connected status.

∗ IPDv00p4 = 4: (REQUIRED, NUOPC PROVIDED)

· Handle Field data initialization. Time stamp the export Fields.

• IPDv00p3, IPDv01p4, IPDv02p4: (NUOPC PROVIDED)

– Set the Mediator internal clock as a copy of the incoming clock.

– Check compatibility, ensuring all advertised import Fields are connected.

• IPDv00p4, IPDv01p5: (NUOPC PROVIDED)

– Optional specialization to initialize export Fields: label_DataInitialize

– Time stamp Fields in import and export States for compatibility checking.

160

• IPDv02p5: (NUOPC PROVIDED)

– Optional specialization to initialize export Fields: label_DataInitialize

– Time stamp Fields in export State for compatibility checking.

– Set Component metadata used to resolve initialize data dependencies.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– SPECIALIZATION REQUIRED/PROVIDED: label_SetRunClock to check and set the internal Clock
against the incoming Clock.

∗ IF (Phase specific specialization present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that internal
Clock and incoming Clock agree on current time and that the time step of the incoming Clock is a
multiple of the internal Clock time step. Under these conditions set the internal stop time to one time
step interval of the incoming Clock. Otherwise exit with error, flagging an incompatibility.

– SPECIALIZATION REQUIRED/PROVIDED: label_CheckImport to check Fields in the import State.

∗ IF (Phase specific specialization is present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: By default check that all import
Fields are at the current time of the internal Clock.

– Time stepping loop: starting at current time, running to stop time of the internal Clock.

∗ Timestamp the Fields in the export State according to the current time of the internal Clock.

∗ SPECIALIZATION REQUIRED: label_Advance to execute mediation code.

∗ SPECIALIZATION OPTIONAL: label_AdvanceClock to advance the current time of the internal
Clock. By default (without specialization) advance the current time of the internal Clock according to
the time step of the internal Clock.

– SPECIALIZATION OPTIONAL/PROVIDED: label_TimestampExport to timestamp Fields in the ex-
port State.

∗ IF (Phase specific specialization present): Execute the phase specific specialization.

∗ ELSE: Execute the phase independent specialization. PROVIDED: Timestamp all Fields in the export
State according to the current time of the internal Clock when entering the RUN method.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specialization to finalize custom parts of the component: label_Finalize.

7.5 NUOPC_Connector IPD implementation

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize the InitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 04 (see section 7 for a precise definition). The default implementation sets the following
mapping:

161

∗ IPDv04p1a = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p1b = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p2 = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p3 = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p4 = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p5a = phase : (REQUIRED, NUOPC PROVIDED)

∗ IPDv04p5b = phase : (REQUIRED, NUOPC PROVIDED)

• IPDv01p1, IPDv02p1: (NUOPC PROVIDED)

– Construct a list of matching Field pairs between import and export State based on the StandardName
Field metadata.

– Store this list of StandardName entries in the CplList attribute of the Connector Component meta-
data.

• IPDv01p2, IPDv02p2: (NUOPC PROVIDED)

– Allocate and initialize the internal state.

– Use the CplList attribute to construct srcFields and dstFields FieldBundles in the internal state
that hold matched Field pairs.

– Set the Connected attribute to true in the Field metadata for each Field that is added to the
srcFields and dstFields FieldBundles.

• IPDv01p3, IPDv02p3: (NUOPC PROVIDED)

– Use the CplList attribute to construct srcFields and dstFields FieldBundles in the internal state
that hold matched Field pairs.

– Set the Connected attribute to true in the Field metadata for each Field that is added to the
srcFields and dstFields FieldBundles.

– Optional specialization to precompute a Connector operation: label_ComputeRouteHandle. Sim-
ple custom implementations store the precomputed communication RouteHandle in the rh member of
the internal state. More complex implementations use the state member in the internal state to store
auxiliary Fields, FieldBundles, and RouteHandles.

– By default (if label_ComputeRouteHandle was not provided) precompute the Connector Route-
Handle as a bilinear Regrid operation between srcFields and dstFields, with unmappedaction
set to ESMF_UNMAPPEDACTION_IGNORE. The resulting RouteHandle is stored in the rh member of
the internal state.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specialization to execute a Connector operation: label_ExecuteRouteHandle. Simple
custom implementations access the srcFields, dstFields, and rh members of the internal state
to implement the required data transfers. More complex implementations access the state member in
the internal state, which holds the auxiliary Fields, FieldBundles, and RouteHandles that potentially were
added during the optional label_ComputeRouteHandle method during initialize.

– By default (if label_ExecuteRouteHandle was not provided) execute the precomputed Connector
RouteHandle between srcFields and dstFields.

– Update the time stamp on the Fields in dstFields to match the time stamp on the Fields in srcFields.

FINALIZE:

162

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specialization to release the custom Connector operation: label_ReleaseRouteHandle;
or by default, if label_ReleaseRouteHandle was not provided, release the default Connector
RouteHandle.

– Optional specialization to finalize custom parts of the component: label_Finalize.

– Internal clean-up.

163

	Description
	Design and Implementation Notes
	Generic Components
	Component Specialization
	Partial Specialization

	Field Dictionary
	Field Dictionary file
	Preloaded Field Dictionary

	Metadata
	Driver Component Metadata
	Model Component Metadata
	Mediator Component Metadata
	Connector Component Metadata
	State Metadata
	Field Metadata

	Initialization
	Phase Maps, Semantic Specialization Labels, and Component Labels
	Field Pairing
	Namespaces
	Using Coupling Sets for Coupling Multiple Nests
	Connection Options
	Data-Dependencies during Initialize
	Transfer of Grid/Mesh/LocStream Objects between Components
	Field and Grid/Mesh/LocStream Reference Sharing
	Field Mirroring

	Timekeeping
	Component Hierarchies
	Resource Control and Threaded Components
	External NUOPC Interface

	API
	Generic Component: NUOPC_Driver
	NUOPC_DriverAddComp
	NUOPC_DriverAddComp
	NUOPC_DriverAddComp
	NUOPC_DriverAddRunElement
	NUOPC_DriverAddRunElement
	NUOPC_DriverAddRunElement
	NUOPC_DriverEgestRunSequence
	NUOPC_DriverGet
	NUOPC_DriverGetComp
	NUOPC_DriverGetComp
	NUOPC_DriverGetComp
	NUOPC_DriverGetComp
	NUOPC_DriverIngestRunSequence
	NUOPC_DriverIngestRunSequence
	NUOPC_DriverNewRunSequence
	NUOPC_DriverPrint
	NUOPC_DriverSetRunSequence

	Generic Component: NUOPC_ModelBase
	Generic Component: NUOPC_Model
	NUOPC_ModelGet

	Generic Component: NUOPC_Mediator
	NUOPC_MediatorGet

	Generic Component: NUOPC_Connector
	NUOPC_ConnectorGet
	NUOPC_ConnectorSet

	General Generic Component Methods
	NUOPC_CompAreServicesSet
	NUOPC_CompAreServicesSet
	NUOPC_CompAttributeAdd
	NUOPC_CompAttributeAdd
	NUOPC_CompAttributeEgest
	NUOPC_CompAttributeEgest
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeGet
	NUOPC_CompAttributeIngest
	NUOPC_CompAttributeIngest
	NUOPC_CompAttributeIngest
	NUOPC_CompAttributeIngest
	NUOPC_CompAttributeReset
	NUOPC_CompAttributeReset
	NUOPC_CompAttributeSet
	NUOPC_CompAttributeSet
	NUOPC_CompAttributeSet
	NUOPC_CompAttributeSet
	NUOPC_CompAttributeSet
	NUOPC_CompAttributeSet
	NUOPC_CompCheckSetClock
	NUOPC_CompDerive
	NUOPC_CompDerive
	NUOPC_CompFilterPhaseMap
	NUOPC_CompFilterPhaseMap
	NUOPC_CompGet
	NUOPC_CompGet
	NUOPC_CompSearchPhaseMap
	NUOPC_CompSearchPhaseMap
	NUOPC_CompSearchRevPhaseMap
	NUOPC_CompSearchRevPhaseMap
	NUOPC_CompSetClock
	NUOPC_CompSetEntryPoint
	NUOPC_CompSetEntryPoint
	NUOPC_CompSetInternalEntryPoint
	NUOPC_CompSetServices
	NUOPC_CompSetVM
	NUOPC_CompSpecialize
	NUOPC_CompSpecialize

	Field Dictionary Methods
	NUOPC_FieldDictionaryAddEntry
	NUOPC_FieldDictionaryEgest
	NUOPC_FieldDictionaryGetEntry
	NUOPC_FieldDictionaryHasEntry
	NUOPC_FieldDictionaryMatchSyno
	NUOPC_FieldDictionarySetSyno
	NUOPC_FieldDictionarySetup
	NUOPC_FieldDictionarySetup

	Free Format Methods
	NUOPC_FreeFormatAdd
	NUOPC_FreeFormatCreate
	NUOPC_FreeFormatCreate
	NUOPC_FreeFormatDestroy
	NUOPC_FreeFormatGet
	NUOPC_FreeFormatGetLine
	NUOPC_FreeFormatLog
	NUOPC_FreeFormatPrint

	Utility Routines
	NUOPC_AddNamespace
	NUOPC_AddNestedState
	NUOPC_Advertise
	NUOPC_Advertise
	NUOPC_AdjustClock
	NUOPC_CheckSetClock
	NUOPC_GetAttribute
	NUOPC_GetAttribute
	NUOPC_GetAttribute
	NUOPC_GetStateMemberLists
	NUOPC_GetStateMemberCount
	NUOPC_GetTimestamp
	NUOPC_IngestPetList
	NUOPC_IngestPetList
	NUOPC_IsAtTime
	NUOPC_IsAtTime
	NUOPC_IsConnected
	NUOPC_IsConnected
	NUOPC_IsUpdated
	NUOPC_IsUpdated
	NUOPC_NoOp
	NUOPC_Realize
	NUOPC_Realize
	NUOPC_Realize
	NUOPC_Realize
	NUOPC_Realize
	NUOPC_SetAttribute
	NUOPC_SetAttribute
	NUOPC_SetTimestamp
	NUOPC_SetTimestamp
	NUOPC_SetTimestamp
	NUOPC_SetTimestamp
	NUOPC_SetTimestamp

	Auxiliary Routines
	NUOPC_Write
	NUOPC_Write
	NUOPC_Write
	NUOPC_Write
	NUOPC_Write

	Standardized Component Dependencies
	Fortran components that are statically built into the executable
	Fortran components that are provided as shared libraries
	Components that are loaded during run-time as shared objects
	Components that depend on components
	Components written in C/C++

	NUOPC Layer Compliance
	The Compliance Checker
	The Component Explorer

	Appendix A: Run Sequence Implementation
	Appendix B: Initialize Phase Definition Versions
	NUOPC_Driver IPD implementation
	NUOPC_ModelBase IPD implementation
	NUOPC_Model IPD implementation
	Initialize Phase Specialization - label_SetClock
	Initialize Phase Specialization - label_DataInitialize
	Run Phase Specialization - label_SetRunClock
	Run Phase Specialization - label_CheckImport
	Run Phase Specialization - label_Advance
	Run Phase Specialization - label_TimestampExport
	Finalize Phase Specialization - label_Finalize

	NUOPC_Mediator IPD implementation
	NUOPC_Connector IPD implementation

