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1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-

component Earth science modeling applications. Such applications may include a few or dozens of components

representing atmospheric, oceanic, terrestrial, or other physical domains, and their constituent processes (dynamical,

chemical, biological, etc.). Often these components are developed by different groups independently, and must be

“coupled” together using software that transfers and transforms data among the components in order to form functional

simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,

consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces

expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring

data between components, and libraries for regridding, time advancement, and other common modeling functions.

Finally, it provides a growing set of tools for using metadata to describe components and their input and output

fields. This capability is important because components that are self-describing can be integrated more easily into

automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”

computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain

any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-

ent user-written applications and contexts with minimal code modification, and so they can be coupled together in

new configurations with relative ease. The idea is to create many components across a broad community, and so to

encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base. It is tested nightly on more than two dozen plat-

form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory

programming models and a hybrid model; can run components sequentially (on all the same processors) or concur-

rently (on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate the

software, we try to apply consistent names and behavior throughout and to provide many examples. The large-scale

structure of the software is straightforward. The utilities and data structures for building modeling components are

called the ESMF infrastructure. The coupling interfaces and drivers are called the superstructure. User code sits

between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized

by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they may

decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling services.

Either way, we encourage users to contact our support team if questions arise about how to best use the software, or

how to structure their application. ESMF is more than software; it’s a group of people dedicated to realizing the vision

of a collaborative model development community that spans institutional and national bounds.

2 The ESMF Reference Manual for C

ESMF has a complete set of Fortran interfaces and some C interfaces. This ESMF Reference Manual is a listing of

ESMF interfaces for C.

Interfaces are grouped by class. A class is comprised of the data and methods for a specific concept like a physical

field. Superstructure classes are listed first in this Manual, followed by infrastructure classes.

The major classes in the ESMF superstructure are Components, which usually represent large pieces of functional-

ity such as atmosphere and ocean models, and States, which are the data structures used to transfer data between

11
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Figure 1: Schematic of the ESMF “sandwich” architecture. The framework consists of two parts, an upper level

superstructure layer and a lower level infrastructure layer. User code is sandwiched between these two layers.

Time

ESMF Superstructure
AppDriver

Component Classes:  GridComp, CplComp, State

Time

ESMF Infrastructure
Data Classes:  Bundle, Field, Grid, Array

Utility Classes:  Clock, LogErr, DELayout, VM, Config

TimeUser Code

Components. There are both data structures and utilities in the ESMF infrastructure. Data structures include multi-

dimensional Arrays, Fields that are comprised of an Array and a Grid, and collections of Arrays and Fields called

ArrayBundles and FieldBundles, respectively. There are utility libraries for data decomposition and communications,

time management, logging and error handling, and application configuration.

3 How to Contact User Support and Find Additional Information

The ESMF team can answer questions about the interfaces presented in this document. For user support, please contact

esmf_support@ucar.edu.

The website, http://www.earthsystemmodeling.org, provide more information of the ESMF project as a whole. The

website includes release notes and known bugs for each version of the framework, supported platforms, project history,

values, and metrics, related projects, the ESMF management structure, and more. The ESMF User’s Guide contains

build and installation instructions, an overview of the ESMF system and a description of how its classes interrelate

(this version of the document corresponds to the last public version of the framework). Also available on the ESMF

website is the ESMF Developer’s Guide that details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to esmf_support@ucar.edu.

12

mailto:esmf_support@ucar.edu
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@ucar.edu


5 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is based on the object-oriented programming concept of a class.

A class is a software construct that is used for grouping a set of related variables together with the subroutines and

functions that operate on them. We use classes in ESMF because they help to organize the code, and often make it

easier to maintain and understand. A particular instance of a class is called an object. For example, Field is an ESMF

class. An actual Field called temperature is an object. That is about as far as we will go into software engineering

terminology.

The C interface is implemented so that the variables associated with a class are stored in a C structure. For example,

an ESMC_Field structure stores the data array, grid information, and metadata associated with a physical field. The

structure for each class is defined in a C header file. The operations associated with each class are also defined in the

header files.

The header files for ESMF are bundled together and can be accessed with a single include statement, #include

"ESMC.h". By convention, the C entry points are named using “ESMC” as a prefix.

5.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rules that hold across the entire API. These are:

• ESMC_<Class>Create() and ESMC_<Class>Destroy(), for creating and destroying objects

of ESMF classes that require internal memory management (- called ESMF deep classes). The

ESMC_<Class>Create() method allocates memory for the object itself and for internal variables, and ini-

tializes variables where appropriate. It is always written as a function that returns a derived type instance of the

class, i.e. an object.

• ESMC_<Class>Set() and ESMC_<Class>Get(), for setting and retrieving a particular item or flag.

In general, these methods are overloaded for all cases where the item can be manipulated as a name/value

pair. If identifying the item requires more than a name, or if the class is of sufficient complexity

that overloading in this way would result in an overwhelming number of options, we define specific

ESMC_<Class>Set<Something>() and ESMC_<Class>Get<Something>() interfaces.

• ESMC_<Class>Add(), ESMC_<Class>AddReplace(), ESMC_<Class>Remove(), and

ESMC_<Class>Replace(), for manipulating objects of ESMF container classes - such as ESMC_State

and ESMC_FieldBundle. For example, the ESMC_FieldBundleAdd() method adds another Field to an

existing FieldBundle object.

• ESMC_<Class>Print(), for printing the contents of an object to standard out. This method is mainly

intended for debugging.

• ESMC_<Class>ReadRestart() and ESMC_<Class>WriteRestart(), for saving the contents of a

class and restoring it exactly. Read and write restart methods have not yet been implemented for most ESMF

classes, so where necessary the user needs to write restart values themselves.

• ESMC_<Class>Validate(), for determining whether a class is internally consistent. For example,

ESMC_FieldValidate() validates the internal consistency of a Field object.

5.2 Deep and Shallow Classes

ESMF contains two types of classes.
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Deep classes require ESMC_<Class>Create() and ESMC_<Class>Destroy() calls. They involve memory

allocation, take significant time to set up (due to memory management) and should not be created in a time-critical

portion of code. Deep objects persist even after the method in which they were created has returned. Most classes

in ESMF, including GridComp, CplComp, State, Fields, FieldBundles, Arrays, ArrayBundles, Grids, and Clocks, fall

into this category.

Shallow classes do not possess ESMC_<Class>Create() and ESMC_<Class>Destroy() calls. They are

simply declared and their values set using an ESMC_<Class>Set() call. Examples of shallow classes are Time,

TimeInterval, and ArraySpec. Shallow classes do not take long to set up and can be declared and set within a time-

critical code segment. Shallow objects stop existing when execution goes out of the declaring scope.

An exception to this is when a shallow object, such as a Time, is stored in a deep object such as a Clock. The

deep Clock object then becomes the declaring scope of the Time object, persisting in memory. The Time object is

deallocated with the ESMC_ClockDestroy() call.

See Section 8, Overall Design and Implementation Notes, for a brief discussion of deep and shallow classes from an

implementation perspective. For an in-depth look at the design and inter-language issues related to deep and shallow

classes, see the ESMF Implementation Report.

5.3 Aliases

Deep objects, i.e. instances of ESMF deep classes created by the appropriate ESMC_<Class>Create(), can be

used with the standard assignment (=) operator.

The assignment

deep2 = deep1

makes deep2 an alias of deep1, meaning that both variables reference the same deep allocation in memory. Many

aliases of the same deep object can be created.

All the aliases of a deep object are equivalent. In particular, there is no distinction between the variable on the left

hand side of the actual ESMC_<Class>Create() call, and any aliases created from it. All actions taken on any of

the aliases of a deep object affect the deep object, and thus all other aliases.

5.4 Special Methods

The following are special methods which, in one case, are required by any application using ESMF, and in the other

case must be called by any application that is using ESMF Components.

• ESMC_Initialize() and ESMC_Finalize() are required methods that must bracket the use of ESMF

within an application. They manage the resources required to run ESMF and shut it down gracefully. ESMF

does not support restarts in the same executable, i.e. ESMC_Initialize() should not be called after

ESMC_Finalize().

• ESMC_<Type>CompInitialize(), ESMC_<Type>CompRun(), and

ESMC_<Type>CompFinalize() are component methods that are used at the highest level within

ESMF. <Type> may be <Grid>, for Gridded Components such as oceans or atmospheres, or <Cpl>, for

Coupler Components that are used to connect them. The content of these methods is not part of the ESMF.

Instead the methods call into associated subroutines within user code.
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5.5 The ESMF Data Hierarchy

The ESMF API is organized around a hierarchy of classes that contain model data. The operations that are performed

on model data, such as regridding, redistribution, and halo updates, are methods of these classes.

The main data classes offered by the ESMF C API, in order of increasing complexity, are:

• Array An ESMF Array is a distributed, multi-dimensional array that can carry information such as its type,

kind, rank, and associated halo widths. It contains a reference to a native language array.

• Field A Field represents a physical scalar or vector field. It contains a reference to an Array along with grid

information and metadata.

• State A State represents the collection of data that a Component either requires to run (an Import State) or can

make available to other Components (an Export State). States may contain references to Arrays, ArrayBundles,

Fields, FieldBundles, or other States.

• Component A Component is a piece of software with a distinct function. ESMF currently recognizes two

types of Components. Components that represent a physical domain or process, such as an atmospheric model,

are called Gridded Components since they are usually discretized on an underlying grid. The Components

responsible for regridding and transferring data between Gridded Components are called Coupler Components.

Each Component is associated with an Import and an Export State. Components can be nested so that simpler

Components are contained within more complex ones.

Underlying these data classes are native language arrays. ESMF Arrays and Fields can be queried for the C pointer to

the actual data. You can perform communication operations either on the ESMF data objects or directly on C arrays

through the VM class, which serves as a unifying wrapper for distributed and shared memory communication libraries.

5.6 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from the simple to the complex, ESMF is organized around a hierar-

chy of classes that represent different spaces associated with a computation. Each of these spaces can be manipulated,

in order to give the user control over how a computation is executed. For Earth system models, this hierarchy starts

with the address space associated with the computer and extends to the physical region described by the application.

The main spatial classes in ESMF, from those closest to the machine to those closest to the application, are:

• The Virtual Machine, or VM The ESMF VM is an abstraction of a parallel computing environment that en-

compasses both shared and distributed memory, single and multi-core systems. Its primary purpose is resource

allocation and management. Each Component runs in its own VM, using the resources it defines. The elements

of a VM are Persistent Execution Threads, or PETs, that are executing in Virtual Address Spaces, or VASs.

A simple case is one in which every PET is associated with a single MPI process. In this case every PET is

executing in its own private VAS. If Components are nested, the parent Component allocates a subset of its PETs

to its children. The children have some flexibility, subject to the constraints of the computing environment, to

decide how they want to use the resources associated with the PETs they’ve received.

• DELayout A DELayout represents a data decomposition (we also refer to this as a distribution). Its basic

elements are Decomposition Elements, or DEs. A DELayout associates a set of DEs with the PETs in a VM.

DEs are not necessarily one-to-one with PETs. For cache blocking, or user-managed multi-threading, more DEs

than PETs may be defined. Fewer DEs than PETs may also be defined if an application requires it.

The current ESMF C API does not provide user access to the DELayout class.
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• DistGrid A DistGrid represents the index space associated with a grid. It is a useful abstraction because often

a full specification of grid coordinates is not necessary to define data communication patterns. The DistGrid

contains information about the sequence and connectivity of data points, which is sufficient information for

many operations. Arrays are defined on DistGrids.

• Array An Array defines how the index space described in the DistGrid is associated with the VAS of each PET.

This association considers the type, kind and rank of the indexed data. Fields are defined on Arrays.

• Grid A Grid is an abstraction for a logically rectangular region in physical space. It associates a coordinate

system, a set of coordinates, and a topology to a collection of grid cells. Grids in ESMF are comprised of

DistGrids plus additional coordinate information.

• Mesh A Mesh provides an abstraction for an unstructured grid. Coordinate information is set in nodes, which

represent vertices or corners. Together the nodes establish the boundaries of mesh elements or cells.

• LocStream A LocStream is an abstraction for a set of unstructured data points without any topological relation-

ship to each other.

• Field A Field may contain more dimensions than the Grid that it is discretized on. For example, for convenience

during integration, a user may want to define a single Field object that holds snapshots of data at multiple times.

Fields also keep track of the stagger location of a Field data point within its associated Grid cell.

5.7 ESMF Maps

In order to define how the index spaces of the spatial classes relate to each other, we require either implicit rules

(in which case the relationship between spaces is defined by default), or special Map arrays that allow the user to

specify the desired association. The form of the specification is usually that the position of the array element carries

information about the first object, and the value of the array element carries information about the second object.

ESMF includes a distGridToArrayMap, a gridToFieldMap, a distGridToGridMap, and others.

5.8 ESMF Specification Classes

It can be useful to make small packets of descriptive parameters. ESMF has one of these:

• ArraySpec, for storing the specifics, such as type/kind/rank, of an array.

5.9 ESMF Utility Classes

There are a number of utilities in ESMF that can be used independently. These are:

• Attributes, for storing metadata about Fields, FieldBundles, States, and other classes. (Not currently available

through the ESMF C API.)

• TimeMgr, for calendar, time, clock and alarm functions.

• LogErr, for logging and error handling.

• Config, for creating resource files that can replace namelists as a consistent way of setting configuration param-

eters.
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6 Integrating ESMF into Applications

Depending on the requirements of the application, the user may want to begin integrating ESMF in either a top-down

or bottom-up manner. In the top-down approach, tools at the superstructure level are used to help reorganize and

structure the interactions among large-scale components in the application. It is appropriate when interoperability is

a primary concern; for example, when several different versions or implementations of components are going to be

swapped in, or a particular component is going to be used in multiple contexts. Another reason for deciding on a

top-down approach is that the application contains legacy code that for some reason (e.g., intertwined functions, very

large, highly performance-tuned, resource limitations) there is little motivation to fully restructure. The superstructure

can usually be incorporated into such applications in a way that is non-intrusive.

In the bottom-up approach, the user selects desired utilities (data communications, calendar management, performance

profiling, logging and error handling, etc.) from the ESMF infrastructure and either writes new code using them,

introduces them into existing code, or replaces the functionality in existing code with them. This makes sense when

maximizing code reuse and minimizing maintenance costs is a goal. There may be a specific need for functionality or

the component writer may be starting from scratch. The calendar management utility is a popular place to start.

6.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adopting the ESMF superstructure. The first two tasks, which occur

before an ESMF call is ever made, have the potential to be the most difficult and time-consuming. They are the work

of splitting an application into components and ensuring that each component has well-defined stages of execution.

ESMF aside, this sort of code structure helps to promote application clarity and maintainability, and the effort put into

it is likely to be a good investment.

1. Decide how to organize the application as discrete Gridded and Coupler Components. This might involve

reorganizing code so that individual components are cleanly separated and their interactions consist of a minimal

number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods. These methods can be multi-phase,

e.g., init_1, init_2.

3. Pack any data that will be transferred between components into ESMF Import and Export State data structures.

This is done by first wrapping model data in either ESMF Arrays or Fields. Arrays are simpler to create and use

than Fields, but carry less information and have a more limited range of operations. These Arrays and Fields

are then added to Import and Export States. They may be packed into ArrayBundles or FieldBundles first, for

more efficient communications. Metadata describing the model data can also be added. At the end of this step,

the data to be transferred between components will be in a compact and largely self-describing form.

4. Pack time information into ESMF time management data structures.

5. Using code templates provided in the ESMF distribution, create ESMF Gridded and Coupler Components to

represent each component in the user code.

6. Write a set services routine that sets ESMF entry points for each user component’s initialize, run, and finalize

methods.

7. Run the application using an ESMF Application Driver.
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6.2 Constants

Named constants are used throughout ESMF to specify the values of many arguments with multiple well defined

values in a consistent way. These constants are defined by a derived type that follows this pattern:

ESMF_<CONSTANT_NAME>_Flag

The values of the constant are then specified by this pattern:

ESMF_<CONSTANT_NAME>_<VALUE1>

ESMF_<CONSTANT_NAME>_<VALUE2>

ESMF_<CONSTANT_NAME>_<VALUE3>

...

A master list of all available constants can be found in section 34.

7 Overall Rules and Behavior

7.1 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DEs, with each DE getting a portion of the data. Depending on

the task, a local or global view of the object may be preferable. In a local view, data indices start with the first element

on the DE and end with the last element on the same DE. In a global view, there is an assumed or specified order to the

set of DEs over which the object is distributed. Data indices start with the first element on the first DE, and continue

across all the elements in the sequence of DEs. The last data index represents the number of elements in the entire

object. The DistGrid provides the mapping between local and global data indices.

The convention in ESMF is that entities with a global view have no prefix. Entities with a DE-local (and in some

cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves can be distributed over PETs. This is an advanced feature for

users who would like to create multiple local chunks of data, for algorithmic or performance reasons. Local DEs are

those DEs that are located on the local PET. Local DE labeling always starts at 0 and goes to localDeCount-1, where

localDeCount is the number of DEs on the local PET. Global DE numbers also start at 0 and go to deCount-1. The

DELayout class provides the mapping between local and global DE numbers.

7.2 Allocation Rules

The basic rule of allocation and deallocation for the ESMF is: whoever allocates it is responsible for deallocating it.

ESMF methods that allocate their own space for data will deallocate that space when the object is de-

stroyed. Methods which accept a user-allocated buffer, for example ESMC_FieldCreate() with the

ESMF_DATACOPY_REFERENCE flag, will not deallocate that buffer at the time the object is destroyed. The user

must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may have Arrays, Fields, Grids and FieldBundles created externally

and associated with them. These associated items are not destroyed along with the rest of the data object since it is

possible for the items to be added to more than one data object at a time (e.g. the same Grid could be part of many

Fields). It is the user’s responsibility to delete these items when the last use of them is done.
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7.3 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMF, thus resulting in the standard C behavior. This behavior

has been documented as the first entry in the API documentation section for each ESMF class. For deep ESMF

objects the assignment results in setting an alias the the same ESMF object in memory. For shallow ESMF objects

the assignment is essentially a equivalent to a copy of the object. For deep classes the equality operators have been

overloaded to test for the alias condition as a counter part to the assignment behavior. This and the not equal operator

are documented following the assignment in the class API documentation sections.

Deep object copies are implemented as a special variant of the ESMC_<Class>Create() methods. It

takes an existing deep object as one of the required arguments. At this point not all deep classes have

ESMC_<Class>Create() methods that allow object copy.

Due to the complexity of deep classes there are many aspects when comparing two objects of the same class. ESMF

provide ESMC_<Class>Match() methods, which are functions that return a class specific match flag. At this point

not all deep classes have ESMC_<Class>Match() methods that allow deep object comparison.

8 Overall Design and Implementation Notes

1. Deep and shallow classes. The deep and shallow classes described in Section 5.2 differ in how and where they

are allocated within a multi-language implementation environment. We distinguish between the implementation

language, which is the language a method is written in, and the calling language, which is the language that the

user application is written in. Deep classes are allocated off the process heap by the implementation language.

Shallow classes are allocated off the stack by the calling language.

2. Base class. All ESMF classes are built upon a Base class, which holds a small set of system-wide capabilities.
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Part II

Command Line Tools

The main product delivered by ESMF is the ESMF library that allows application developers to write programs based

on the ESMF API. In addition to the programming library, ESMF distributions come with a small set of command line

tools (CLT) that are of general interest to the community. These CLTs utilize the ESMF library to implement features

such as printing general information about the ESMF installation, or generating regrid weight files. The provided

ESMF CLTs are intended to be used as standard command line tools.

The bundled ESMF CLTs are built and installed during the usual ESMF installation process, which is described in

detail in the ESMF User’s Guide section "Building and Installing the ESMF". After installation, the CLTs will be

located in the ESMF_APPSDIR directory, which can be found as a Makefile variable in the esmf.mk file. The

esmf.mk file can be found in the ESMF_INSTALL_LIBDIR directory after a successful installation. The ESMF

User’s Guide discusses the esmf.mkmechanism to access the bundled CLTs in more detail in section "Using Bundled

ESMF Command Line Tools".

The following sections provide in-depth documentation of the bundled ESMF CLTs. In addition, each tool supports

the standard --help command line argument, providing a brief description of how to invoke the program.
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Part III

Superstructure
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9 Overview of Superstructure

ESMF superstructure classes define an architecture for assembling Earth system applications from modeling compo-

nents. A component may be defined in terms of the physical domain that it represents, such as an atmosphere or sea

ice model. It may also be defined in terms of a computational function, such as a data assimilation system. Earth

system research often requires that such components be coupled together to create an application. By coupling we

mean the data transformations and, on parallel computing systems, data transfers, that are necessary to allow data from

one component to be utilized by another. ESMF offers regridding methods and other tools to simplify the organization

and execution of inter-component data exchanges.

In addition to components defined at the level of major physical domains and computational functions, components

may be defined that represent smaller computational functions within larger components, such as the transformation

of data between the physics and dynamics in a spectral atmosphere model, or the creation of nested higher resolution

regions within a coarser grid. The objective is to couple components at varying scales both flexibly and efficiently.

ESMF encourages a hierarchical application structure, in which large components branch into smaller sub-components

(see Figure 2). ESMF also makes it easier for the same component to be used in multiple contexts without changes to

its source code.

Key Features

Modular, component-based architecture.

Hierarchical assembly of components into applications.

Use of components in multiple contexts without modification.

Sequential or concurrent component execution.

Single program, multiple datastream (SPMD) applications for maximum portability and reconfigurability.

Multiple program, multiple datastream (MPMD) option for flexibility.

9.1 Superstructure Classes

There are a small number of classes in the ESMF superstructure:

• Component An ESMF component has two parts, one that is supplied by ESMF and one that is supplied by the

user. The part that is supplied by the framework is an ESMF derived type that is either a Gridded Component

(GridComp) or a Coupler Component (CplComp). A Gridded Component typically represents a physical

domain in which data is associated with one or more grids - for example, a sea ice model. A Coupler Component

arranges and executes data transformations and transfers between one or more Gridded Components. Gridded

Components and Coupler Components have standard methods, which include initialize, run, and finalize. These

methods can be multi-phase.

The second part of an ESMF Component is user code, such as a model or data assimilation system. Users set

entry points within their code so that it is callable by the framework. In practice, setting entry points means that

within user code there are calls to ESMF methods that associate the name of a Fortran subroutine with a cor-

responding standard ESMF operation. For example, a user-written initialization routine called myOceanInit

might be associated with the standard initialize routine of an ESMF Gridded Component named “myOcean”

that represents an ocean model.

• State ESMF Components exchange information with other Components only through States. A State is an

ESMF derived type that can contain Fields, FieldBundles, Arrays, ArrayBundles, and other States. A Compo-

nent is associated with two States, an Import State and an Export State. Its Import State holds the data that it

receives from other Components. Its Export State contains data that it makes available to other Components.
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Figure 2: ESMF enables applications such as the atmospheric general circulation model GEOS-5 to be structured

hierarchically, and reconfigured and extended easily. Each box in this diagram is an ESMF Gridded Component.
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An ESMF coupled application typically involves a parent Gridded Component, two or more child Gridded Components

and one or more Coupler Components.

The parent Gridded Component is responsible for creating the child Gridded Components that are exchanging data, for

creating the Coupler, for creating the necessary Import and Export States, and for setting up the desired sequencing.

The application’s “main” routine calls the parent Gridded Component’s initialize, run, and finalize methods in order

to execute the application. For each of these standard methods, the parent Gridded Component in turn calls the

corresponding methods in the child Gridded Components and the Coupler Component. For example, consider a

simple coupled ocean/atmosphere simulation. When the initialize method of the parent Gridded Component is called

by the application, it in turn calls the initialize methods of its child atmosphere and ocean Gridded Components, and

the initialize method of an ocean-to-atmosphere Coupler Component. Figure 3 shows this schematically.

9.2 Hierarchical Creation of Components

Components are allocated computational resources in the form of Persistent Execution Threads, or PETs. A list of

a Component’s PETs is contained in a structure called a Virtual Machine, or VM. The VM also contains information

about the topology and characteristics of the underlying computer. Components are created hierarchically, with parent

Components creating child Components and allocating some or all of their PETs to each one. By default ESMF creates

a new VM for each child Component, which allows Components to tailor their VM resources to match their needs. In

some cases, a child may want to share its parent’s VM - ESMF supports this, too.
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Figure 3: A call to a standard ESMF initialize (run, finalize) method by a parent component triggers calls to initialize

(run, finalize) all of its child components.
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A Gridded Component may exist across all the PETs in an application. A Gridded Component may also reside on

a subset of PETs in an application. These PETs may wholly coincide with, be wholly contained within, or wholly

contain another Component.

9.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in sequence on the same set of PETs the application is executing

in a sequential mode. When Gridded Components are created and run on mutually exclusive sets of PETs, and are

coupled by a Coupler Component that extends over the union of these sets, the mode of execution is concurrent.

Figure 4 illustrates a typical configuration for a simple coupled sequential application, and Figure 5 shows a possible

configuration for the same application running in a concurrent mode.

Parent Components can select if and when to wait for concurrently executing child Components, synchronizing only

when required.
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It is possible for ESMF applications to contain some Component sets that are executing sequentially and others that

are executing concurrently. We might have, for example, atmosphere and land Components created on the same subset

of PETs, ocean and sea ice Components created on the remainder of PETs, and a Coupler created across all the PETs

in the application.

9.4 Intra-Component Communication

All data transfers within an ESMF application occur within a component. For example, a Gridded Component may

contain halo updates. Another example is that a Coupler Component may redistribute data between two Gridded

Components. As a result, the architecture of ESMF does not depend on any particular data communication mechanism,

and new communication schemes can be introduced without affecting the overall structure of the application.

Since all data communication happens within a component, a Coupler Component must be created on the union of the

PETs of all the Gridded Components that it couples.

9.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currently executing Component. For this reason, all PETs in the

current VM must make the same distributed object creation calls. When a Coupler Component running on a super-

set of a Gridded Component’s PETs needs to make communication calls involving objects created by the Gridded

Component, an ESMF-supplied function called ESMF_StateReconcile() creates proxy objects for those PETs

that had no previous information about the distributed objects. Proxy objects contain no local data but can be used in

communication calls (such as regrid or redistribute) to describe the remote source for data being moved to the current

PET, or to describe the remote destination for data being moved from the local PET. Figure 6 is a simple schematic

that shows the sequence of events in a reconcile call.

9.6 Performance

The ESMF design enables the user to configure ESMF applications so that data is transferred directly from one com-

ponent to another, without requiring that it be copied or sent to a different data buffer as an interim step. This is likely

to be the most efficient way of performing inter-component coupling. However, if desired, an application can also be

configured so that data from a source component is sent to a distinct set of Coupler Component PETs for processing

before being sent to its destination.

The ability to overlap computation with communication is essential for performance. When running with ESMF the

user can initiate data sends during Gridded Component execution, as soon as the data is ready. Computations can then

proceed simultaneously with the data transfer.
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Figure 4: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded Com-

ponent running sequentially with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Component

contains the sequencing information and time advancement loop. The application driver, Coupler, and all Gridded

Components are distributed over nine PETs.

GridComp

“Atmosphere”

GridComp “Hurricane Model”

GridComp

“Ocean”

CplComp

“Atm-Ocean Coupler”

LOOP   Call Run

Run

Run

Run

Run

AppDriver (“Main”)

Call Run

1 2 3 54 6

PETs

T
im

e


7 8 9

26



Figure 5: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded

Component running concurrently with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Compo-

nent contains the sequencing information and time advancement loop. The application driver, Coupler, and top-level

“Hurricane Model” Gridded Component are distributed over nine PETs. The “Atmosphere” Gridded Component is

distributed over three PETs and the “Ocean” Gridded Component is distributed over six PETs.
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Figure 6: An ESMF_StateReconcile() call creates proxy objects for use in subsequent communication calls.

The reconcile call would normally be made during Coupler initialization.
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9.7 Object Model

The following is a simplified Unified Modeling Language (UML) diagram showing the relationships among ESMF

superstructure classes. See Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in

the diagram and their meaning.

GridComp CplComp

Comp

Possible extensions

DataCompVisComp

...

10 Application Driver and Required ESMF Methods

10.1 Description

Every ESMF application needs a driver code. Typically the driver layer is implemented as the "main" of the applica-

tion, although this is not strictly an ESMF requirement. For most ESMF applications the task of the application driver

will be very generic: Initialize ESMF, create a top-level Component and call its Initialize, Run and Finalize methods,

before destroying the top-level Component again and calling ESMF Finalize.

ESMF provides a number of different application driver templates in the

$ESMF_DIR/src/Superstructure/AppDriver directory. An appropriate one can be chosen depend-

ing on how the application is to be structured:

Sequential vs. Concurrent Execution In a sequential execution model, every Component executes on all PETs, with

each Component completing execution before the next Component begins. This has the appeal of simplicity of

data consumption and production: when a Gridded Component starts, all required data is available for use,

and when a Gridded Component finishes, all data produced is ready for consumption by the next Gridded

Component. This approach also has the possibility of less data movement if the grid and data decomposition is

done such that each processor’s memory contains the data needed by the next Component.

In a concurrent execution model, subgroups of PETs run Gridded Components and multiple Gridded Compo-

nents are active at the same time. Data exchange must be coordinated between Gridded Components so that data

deadlock does not occur. This strategy has the advantage of allowing coupling to other Gridded Components

at any time during the computational process, including not having to return to the calling level of code before

making data available.

Pairwise vs. Hub and Spoke Coupler Components are responsible for taking data from one Gridded Component and

putting it into the form expected by another Gridded Component. This might include regridding, change of units,

averaging, or binning.
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Coupler Components can be written for pairwise data exchange: the Coupler Component takes data from a

single Component and transforms it for use by another single Gridded Component. This simplifies the structure

of the Coupler Component code.

Couplers can also be written using a hub and spoke model where a single Coupler accepts data from all other

Components, can do data merging or splitting, and formats data for all other Components.

Multiple Couplers, using either of the above two models or some mixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces for all public functions. Some

functions also have C interfaces, and the number of these is expected to increase over time.

Number of Executables The simplest way to run an application is to run the same executable program on all PETs.

Different Components can still be run on mutually exclusive PETs by using branching (e.g., if this is PET 1,

2, or 3, run Component A, if it is PET 4, 5, or 6 run Component B). This is a SPMD model, Single Program

Multiple Data.

The alternative is to start a different executable program on different PETs. This is a MPMD model, Multiple

Program Multiple Data. There are complications with many job control systems on multiprocessor machines

in getting the different executables started, and getting inter-process communications established. ESMF cur-

rently has some support for MPMD: different Components can run as separate executables, but the Coupler that

transfers data between the Components must still run on the union of their PETs. This means that the Coupler

Component must be linked into all of the executables.

10.2 Required ESMF Methods

There are a few methods that every ESMF application must contain. First, ESMC_Initialize() and

ESMC_Finalize() are in complete analogy to MPI_Init() and MPI_Finalize() known from MPI. All

ESMF programs, serial or parallel, must initialize the ESMF system at the beginning, and finalize it at the end of exe-

cution. The behavior of calling any ESMF method before ESMC_Initialize(), or after ESMC_Finalize() is

undefined.

Second, every ESMF Component that is accessed by an ESMF application requires that its set services routine is called

through ESMC_<Grid/Cpl>CompSetServices(). The Component must implement one public entry point, its

set services routine, that can be called through the ESMC_<Grid/Cpl>CompSetServices() library routine.

The Component set services routine is responsible for setting entry points for the standard ESMF Component methods

Initialize, Run, and Finalize.

Finally, the Component can optionally call ESMC_<Grid/Cpl>CompSetVM() before calling

ESMC_<Grid/Cpl>CompSetServices(). Similar to ESMC_<Grid/Cpl>CompSetServices(),

the

ESMC_<Grid/Cpl>CompSetVM() call requires a public entry point into the Component. It allows the Component

to adjust certain aspects of its execution environment, i.e. its own VM, before it is started up.

The following sections discuss the above mentioned aspects in more detail.

10.2.1 ESMC_Initialize - Initialize ESMF

INTERFACE:

int ESMC_Initialize(

int *rc, // return code
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...); // optional arguments (see below)

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Initialize the ESMF. This method must be called before any other ESMF methods are used. The method contains a
barrier before returning, ensuring that all processes made it successfully through initialization.

Typically ESMC_Initialize() will call MPI_Init() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initialization is left to ESMC_Initialize() it inherits all of the
MPI implementation dependent limitations of what may or may not be done before MPI_Init(). For instance, it is
unsafe for some MPI implementations, such as MPICH1, to do I/O before the MPI environment is initialized. Please
consult the documentation of your MPI implementation for details.

Optional arguments are recognised. To indicate the end of the optional argument list, ESMC_ArgLast must be used.
A minimal call to ESMC_Initialize() would be:

ESMC_Initialize (NULL, ESMC_ArgLast);

The optional arguments are specified using the ESMC_InitArg macros. For example, to turn off logging so that no
log files would be created, the ESMC_Initialize() call would be coded as:

ESMC_Initialize (&rc,

ESMC_InitArgLogKindFlag(ESMC_LOGKIND_NONE),

ESMC_ArgLast);

Before exiting the application the user must call ESMC_Finalize() to release resources and clean up the ESMF
gracefully.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors. NULL may be passed when the return code is not
desired.

[ESMC_InitArgDefaultCalKind(ARG)] Macro specifying the default calendar kind for the entire application. Valid
values for ARG are documented in section 26.2.1. If not specified, defaults to ESMC_CALKIND_NOCALENDAR.

[ESMC_InitArgDefaultConfigFilename(ARG)] Macro specifying the name of the default configuration file for the
Config class. If not specified, no default file is used.

[ESMC_InitArgLogFilename(ARG)] Macro specifying the name used as part of the default log file name for the
default log. If not specified, defaults to ESMF_LogFile.

[ESMC_InitArgLogKindFlag(ARG)] Macro specifying the default Log kind to be used by ESMF Log Manager.
Valid values for ARG are documented in section 31.2.1. If not specified, defaults to ESMC_LOGKIND_MULTI.

ESMC_ArgLast Macro indicating the end of the optional argument list. This must be provided even when there are
no optional arguments.
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10.2.2 ESMC_FinalizeWithFlag - Finalize the ESMF Framework and specify the type of finalization.

INTERFACE:

int ESMC_FinalizeWithFlag(

ESMC_End_Flag endFlag); // enumerator for exit action (see below)

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open connec-
tions, and release internal resources cleanly.

The endFlag argument has one of three options:

ESMC_END_NORMAL Finalize normally.

ESMC_END_KEEPMPI Finalize normally without finalizing MPI.

ESMC_END_ABORT Abort on finalization.

10.2.3 ESMC_Finalize - Finalize the ESMF Framework

INTERFACE:

int ESMC_Finalize(void);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open connec-

tions, and release internal resources cleanly.

11 GridComp Class

11.1 Description

In Earth system modeling, the most natural way to think about an ESMF Gridded Component, or ESMC_GridComp,

is as a piece of code representing a particular physical domain, such as an atmospheric model or an ocean model.
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Gridded Components may also represent individual processes, such as radiation or chemistry. It’s up to the application

writer to decide how deeply to “componentize.”

Earth system software components tend to share a number of basic features. Most ingest and produce a variety

of physical fields, refer to a (possibly noncontiguous) spatial region and a grid that is partitioned across a set of

computational resources, and require a clock for things like stepping a governing set of PDEs forward in time. Most

can also be divided into distinct initialize, run, and finalize computational phases. These common characteristics are

used within ESMF to define a Gridded Component data structure that is tailored for Earth system modeling and yet is

still flexible enough to represent a variety of domains.

A well designed Gridded Component does not store information internally about how it couples to other Gridded

Components. That allows it to be used in different contexts without changes to source code. The idea here is to avoid

situations in which slightly different versions of the same model source are maintained for use in different contexts -

standalone vs. coupled versions, for example. Data is passed in and out of Gridded Components using an ESMF State,

this is described in Section 14.1.

An ESMF Gridded Component has two parts, one which is user-written and another which is part of the framework.

The user-written part is software that represents a physical domain or performs some other computational function. It

forms the body of the Gridded Component. It may be a piece of legacy code, or it may be developed expressly for use

with ESMF. It must contain routines with standard ESMF interfaces that can be called to initialize, run, and finalize the

Gridded Component. These routines can have separate callable phases, such as distinct first and second initialization

steps.

ESMF provides the Gridded Component derived type, ESMC_GridComp. An ESMC_GridComp must be created

for every portion of the application that will be represented as a separate component. For example, in a climate model,

there may be Gridded Components representing the land, ocean, sea ice, and atmosphere. If the application contains

an ensemble of identical Gridded Components, every one has its own associated ESMC_GridComp. Each Gridded

Component has its own name and is allocated a set of computational resources, in the form of an ESMF Virtual

Machine, or VM.

The user-written part of a Gridded Component is associated with an ESMC_GridComp derived type through a routine

called ESMC_SetServices(). This is a routine that the user must write, and declare public. Inside the SetServices

routine the user must call ESMC_SetEntryPoint() methods that associate a standard ESMF operation with the

name of the corresponding Fortran subroutine in their user code.

11.2 Class API

11.2.1 ESMC_GridCompCreate - Create a Gridded Component

INTERFACE:

ESMC_GridComp ESMC_GridCompCreate(

const char *name, // in

const char *configFile, // in

ESMC_Clock clock, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_GridComp object.
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DESCRIPTION:

This interface creates an ESMC_GridComp object. By default, a separate VM context will be created for each
component. This implies creating a new MPI communicator and allocating additional memory to manage the VM
resources.

The arguments are:

name Name of the newly-created ESMC_GridComp.

configFile The filename of an ESMC_Config format file. If specified, this file is opened an ESMC_Config config-
uration object is created for the file, and attached to the new component.

clock Component-specific ESMC_Clock. This clock is available to be queried and updated by the new
ESMC_GridComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

11.2.2 ESMC_GridCompDestroy - Destroy a Gridded Component

INTERFACE:

int ESMC_GridCompDestroy(

ESMC_GridComp *comp // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_GridComp.

The arguments are:

comp Release all resources associated with this ESMC_GridComp and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

11.2.3 ESMC_GridCompFinalize - Finalize a Gridded Component

INTERFACE:
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int ESMC_GridCompFinalize(

ESMC_GridComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a GridComp.

The arguments are:

comp ESMC_GridComp to call finalize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set by userRoutine before returning.

11.2.4 ESMC_GridCompGetInternalState - Get the Internal State of a Gridded Component

INTERFACE:

void *ESMC_GridCompGetInternalState(

ESMC_GridComp comp, // in

int *rc // out

);

RETURN VALUE:

Pointer to private data block that is stored in the internal state.
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DESCRIPTION:

Available to be called by an ESMC_GridComp at any time after ESMC_GridCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be global data, or can be allocated in a private data block and the address of that block can be registered with the
framework and retrieved by this call. When running multiple instantiations of an ESMC_GridComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMC_GridCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer.

Only the last data block set via ESMC_GridCompSetInternalState will be accessible.

The arguments are:

comp An ESMC_GridComp object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

11.2.5 ESMC_GridCompInitialize - Initialize a Gridded Component

INTERFACE:

int ESMC_GridCompInitialize(

ESMC_GridComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user initialization code for a GridComp.

The arguments are:

comp ESMC_GridComp to call initialize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.
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phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set by userRoutine before returning.

11.2.6 ESMC_GridCompPrint - Print the contents of a GridComp

INTERFACE:

int ESMC_GridCompPrint(

ESMC_GridComp comp // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about an ESMC_GridComp to stdout.

The arguments are:

comp An ESMC_GridComp object.

11.2.7 ESMC_GridCompRun - Run a Gridded Component

INTERFACE:

int ESMC_GridCompRun(

ESMC_GridComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Call the associated user run code for a GridComp.

The arguments are:

comp ESMC_GridComp to call run routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set by userRoutine before returning.

11.2.8 ESMC_GridCompSetEntryPoint - Set user routine as entry point for standard Component method

INTERFACE:

int ESMC_GridCompSetEntryPoint(

ESMC_GridComp comp, // in

enum ESMC_Method method, // in

void (*userRoutine) // in

(ESMC_GridComp, ESMC_State, ESMC_State, ESMC_Clock *, int *),

int phase // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methods. After this
call the userRoutine becomes accessible via the standard Component method API.

The arguments are:

comp An ESMC_GridComp object.
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method One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section 34.12 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this Component method. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

11.2.9 ESMC_GridCompSetInternalState - Set the Internal State of a Gridded Component

INTERFACE:

int ESMC_GridCompSetInternalState(

ESMC_GridComp comp, // inout

void *data // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by an ESMC_GridComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines, data that they need to
share in common can either be global data, or can be allocated in a private data block and the address of that block
can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations of an
ESMC_GridComp, for example during ensemble runs, it may be simpler to maintain private data specific to each run
with private data blocks. A corresponding ESMC_GridCompGetInternalState call retrieves the data pointer.

Only the last data block set via ESMC_GridCompSetInternalState will be accessible.

The arguments are:

comp An ESMC_GridComp object.

data Pointer to private data block to be stored.

11.2.10 ESMC_GridCompSetServices - Call user routine to register GridComp methods

INTERFACE:

int ESMC_GridCompSetServices(

ESMC_GridComp comp, // in

void (*userRoutine)(ESMC_GridComp, int *), // in

int *userRc // out

);
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RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call into user provided userRoutine which is responsible for setting Component’s Initialize(), Run() and Finalize()
services.

The arguments are:

comp Gridded Component.

userRoutine Routine to be called.

userRc Return code set by userRoutine before returning.

The Component writer must supply a subroutine with the exact interface shown above for the userRoutine argu-
ment.

The userRoutine, when called by the framework, must make successive calls to
ESMC_GridCompSetEntryPoint() to preset callback routines for standard Component Initialize(), Run() and
Finalize() methods.

12 CplComp Class

12.1 Description

In a large, multi-component application such as a weather forecasting or climate prediction system running within

ESMF, physical domains and major system functions are represented as Gridded Components (see Section 11.1).

A Coupler Component, or ESMC_CplComp, arranges and executes the data transformations between the Gridded

Components. Ideally, Coupler Components should contain all the information about inter-component communication

for an application. This enables the Gridded Components in the application to be used in multiple contexts; that is, used

in different coupled configurations without changes to their source code. For example, the same atmosphere might

in one case be coupled to an ocean in a hurricane prediction model, and to a data assimilation system for numerical

weather prediction in another. A single Coupler Component can couple two or more Gridded Components.

Like Gridded Components, Coupler Components have two parts, one that is provided by the user and another that is

part of the framework. The user-written portion of the software is the coupling code necessary for a particular exchange

between Gridded Components. This portion of the Coupler Component code must be divided into separately callable

initialize, run, and finalize methods. The interfaces for these methods are prescribed by ESMF.

The term “user-written” is somewhat misleading here, since within a Coupler Component the user can leverage ESMF

infrastructure software for regridding, redistribution, lower-level communications, calendar management, and other

functions. However, ESMF is unlikely to offer all the software necessary to customize a data transfer between Gridded

Components. For instance, ESMF does not currently offer tools for unit tranformations or time averaging operations,

so users must manage those operations themselves.

The second part of a Coupler Component is the ESMC_CplComp derived type within ESMF. The user must create one

of these types to represent a specific coupling function, such as the regular transfer of data between a data assimilation

system and an atmospheric model. 1

1It is not necessary to create a Coupler Component for each individual data transfer.
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The user-written part of a Coupler Component is associated with an ESMC_CplComp derived type through a rou-

tine called ESMC_SetServices(). This is a routine that the user must write and declare public. Inside the

ESMC_SetServices() routine the user must call ESMC_SetEntryPoint() methods that associate a stan-

dard ESMF operation with the name of the corresponding Fortran subroutine in their user code. For example, a user

routine called “couplerInit” might be associated with the standard initialize routine in a Coupler Component.

12.2 Class API

12.2.1 ESMC_CplCompCreate - Create a Coupler Component

INTERFACE:

ESMC_CplComp ESMC_CplCompCreate(

const char *name, // in

const char *configFile, // in

ESMC_Clock clock, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_CplComp object.

DESCRIPTION:

This interface creates an ESMC_CplComp object. By default, a separate VM context will be created for each compo-
nent. This implies creating a new MPI communicator and allocating additional memory to manage the VM resources.

The arguments are:

name Name of the newly-created ESMC_CplComp.

configFile The filename of an ESMC_Config format file. If specified, this file is opened an ESMC_Config config-
uration object is created for the file, and attached to the new component.

clock Component-specific ESMC_Clock. This clock is available to be queried and updated by the new
ESMC_CplComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

12.2.2 ESMC_CplCompDestroy - Destroy a Coupler Component

INTERFACE:

int ESMC_CplCompDestroy(

ESMC_CplComp *comp // inout

);
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RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_CplComp.

The arguments are:

comp Release all resources associated with this ESMC_CplComp and mark the object as invalid. It is an error to pass
this object into any other routines after being destroyed.

12.2.3 ESMC_CplCompFinalize - Finalize a Coupler Component

INTERFACE:

int ESMC_CplCompFinalize(

ESMC_CplComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a CplComp.

The arguments are:

comp ESMC_CplComp to call finalize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.
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[userRc] Return code set by userRoutine before returning.

12.2.4 ESMC_CplCompGetInternalState - Get the internal State of a Coupler Component

INTERFACE:

void *ESMC_CplCompGetInternalState(

ESMC_CplComp comp, //in

int *rc // out

);

RETURN VALUE:

Pointer to private data block that is stored in the internal state.

DESCRIPTION:

Available to be called by an ESMC_CplComp at any time after ESMC_CplCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be global data, or can be allocated in a private data block and the address of that block can be registered with the
framework and retrieved by this call. When running multiple instantiations of an ESMC_CplComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMC_CplCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer.

Only the last data block set via ESMC_CplCompSetInternalState will be accessible.

The arguments are:

comp An ESMC_CplComp object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

12.2.5 ESMC_CplCompInitialize - Initialize a Coupler Component

INTERFACE:

int ESMC_CplCompInitialize(

ESMC_CplComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);
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RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user initialize code for a CplComp.

The arguments are:

comp ESMC_CplComp to call initialize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set by userRoutine before returning.

12.2.6 ESMC_CplCompPrint - Print a Coupler Component

INTERFACE:

int ESMC_CplCompPrint(

ESMC_CplComp comp // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about an ESMC_CplComp to stdout.

The arguments are:

comp An ESMC_CplComp object.

44



12.2.7 ESMC_CplCompRun - Run a Coupler Component

INTERFACE:

int ESMC_CplCompRun(

ESMC_CplComp comp, // inout

ESMC_State importState, // inout

ESMC_State exportState, // inout

ESMC_Clock clock, // in

int phase, // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user run code for a CplComp.

The arguments are:

comp ESMC_CplComp to call run routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock External ESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines are single-phase or multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set by userRoutine before returning.

12.2.8 ESMC_CplCompSetEntryPoint - Set the Entry point of a Coupler Component

INTERFACE:

int ESMC_CplCompSetEntryPoint(

ESMC_CplComp comp, // in

enum ESMC_Method method, // in
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void (*userRoutine) // in

(ESMC_CplComp, ESMC_State, ESMC_State, ESMC_Clock *, int *),

int phase // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methods. After this
call the userRoutine becomes accessible via the standard Component method API.

The arguments are:

comp An ESMC_CplComp object.

method One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section 34.12 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this Component method. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

12.2.9 ESMC_CplCompSetInternalState - Set the internal State of a Coupler Component

INTERFACE:

int ESMC_CplCompSetInternalState(

ESMC_CplComp comp, // inout

void *data // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by an ESMC_CplComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines, data that they need to
share in common can either be global data, or can be allocated in a private data block and the address of that block
can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations of an
ESMC_CplComp, for example during ensemble runs, it may be simpler to maintain private data specific to each run
with private data blocks. A corresponding ESMC_CplCompGetInternalState call retrieves the data pointer.

Only the last data block set via ESMC_CplCompSetInternalState will be accessible.

The arguments are:
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comp An ESMC_CplComp object.

data Pointer to private data block to be stored.

12.2.10 ESMC_CplCompSetServices - Destroy a Coupler Component

INTERFACE:

int ESMC_CplCompSetServices(

ESMC_CplComp comp, // in

void (*userRoutine)(ESMC_CplComp, int *), // in

int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call into user provided userRoutine which is responsible for setting Component’s Initialize(), Run() and Finalize()
services.

The arguments are:

comp Gridded Component.

userRoutine Routine to be called.

userRc Return code set by userRoutine before returning.

The Component writer must supply a subroutine with the exact interface shown above for the userRoutine argu-
ment.

The userRoutine, when called by the framework, must make successive calls to
ESMC_CplCompSetEntryPoint() to preset callback routines for standard Component Initialize(), Run()
and Finalize() methods.

13 SciComp Class

13.1 Description

In Earth system modeling, a particular piece of code representing a physical domain, such as an atmospheric model or

an ocean model, is typically implemented as an ESMF Gridded Component, or ESMC_GridComp. However, there

are times when physical domains, or realms, need to be represented, but aren’t actual pieces of code, or software.

These domains can be implemented as ESMF Science Components, or ESMC_SciComp.

Unlike Gridded and Coupler Components, Science Components are not associated with software; they don’t include

execution routines such as initialize, run and finalize.

47



13.2 Class API

13.2.1 ESMC_SciCompCreate - Create a Science Component

INTERFACE:

ESMC_SciComp ESMC_SciCompCreate(

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_SciComp object.

DESCRIPTION:

This interface creates an ESMC_SciComp object.

The arguments are:

name Name of the newly-created ESMC_SciComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

13.2.2 ESMC_SciCompDestroy - Destroy a Science Component

INTERFACE:

int ESMC_SciCompDestroy(

ESMC_SciComp *comp // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_SciComp.

The arguments are:

comp Release all resources associated with this ESMC_SciComp and mark the object as invalid. It is an error to pass
this object into any other routines after being destroyed.
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13.2.3 ESMC_SciCompPrint - Print the contents of a SciComp

INTERFACE:

int ESMC_SciCompPrint(

ESMC_SciComp comp // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about an ESMC_SciComp to stdout.

The arguments are:

comp An ESMC_SciComp object.

14 State Class

14.1 Description

A State contains the data and metadata to be transferred between ESMF Components. It is an important class, because

it defines a standard for how data is represented in data transfers between Earth science components. The State

construct is a rational compromise between a fully prescribed interface - one that would dictate what specific fields

should be transferred between components - and an interface in which data structures are completely ad hoc.

There are two types of States, import and export. An import State contains data that is necessary for a Gridded

Component or Coupler Component to execute, and an export State contains the data that a Gridded Component or

Coupler Component can make available.

States can contain Arrays, ArrayBundles, Fields, FieldBundles, and other States. However, the current C API only

provides State access to Arrays, Fields and nested States. States cannot directly contain native language arrays (i.e.

Fortran or C style arrays). Objects in a State must span the VM on which they are running. For sequentially executing

components which run on the same set of PETs this happens by calling the object create methods on each PET, creating

the object in unison. For concurrently executing components which are running on subsets of PETs, an additional

method, called ESMF_StateReconcile(), is provided by ESMF to broadcast information about objects which

were created in sub-components. Currently this method is only available through the ESMF Fortran API. Hence

the Coupler Component reponsible for reconciling States from Component that execute on subsets of PETs must be

written in Fortran.

State methods include creation and deletion, adding and retrieving data items, and performing queries.

14.2 Restrictions and Future Work

1. No synchronization of object IDs at object create time. Object IDs are used during the reconcile process to

identify objects which are unknown to some subset of the PETs in the currently running VM. Object IDs are

assigned in sequential order at object create time.
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One important request by the user community during the ESMF object design was that there be no communi-

cation overhead or synchronization when creating distributed ESMF objects. As a consequence it is required to

create these objects in unison across all PETs in order to keep the ESMF object identification in sync.

14.3 Class API

14.3.1 ESMC_StateAddArray - Add an Array object to a State

INTERFACE:

int ESMC_StateAddArray(

ESMC_State state, // in

ESMC_Array array // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to a ESMC_State object.

The arguments are:

state The State object.

array The Array object to be included within the State.

14.3.2 ESMC_StateAddField - Add a Field object to a State

INTERFACE:

int ESMC_StateAddField(

ESMC_State state, // in

ESMC_Field field // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to a ESMC_State object.

The arguments are:
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state The State object.

array The Array object to be included within the State.

14.3.3 ESMC_StateCreate - Create an Array

INTERFACE:

ESMC_State ESMC_StateCreate(

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_State object.

DESCRIPTION:

Create an ESMC_State object.

The arguments are:

[name] The name for the State object. If not specified, i.e. NULL, a default unique name will be generated:
"StateNNN" where NNN is a unique sequence number from 001 to 999.

rc Return code; equals ESMF_SUCCESS if there are no errors.

14.3.4 ESMC_StateDestroy - Destroy a State

INTERFACE:

int ESMC_StateDestroy(

ESMC_State *state // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy a ESMC_State object.

The arguments are:
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state The State to be destroyed.

14.3.5 ESMC_StateGetArray - Obtains an Array object from a State

INTERFACE:

int ESMC_StateGetArray(

ESMC_State state, // in

const char *name, // in

ESMC_Array *array // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to an ESMC_Array object contained within a State.

The arguments are:

state The State object.

name The name of the desired Array object.

array A pointer to the Array object.

14.3.6 ESMC_StateGetField - Obtains a Field object from a State

INTERFACE:

int ESMC_StateGetField(

ESMC_State state, // in

const char *name, // in

ESMC_Field *field // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to a ESMC_Field object contained within a State.

The arguments are:
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state The State object.

name The name of the desired Field object.

array A pointer to the Field object.

14.3.7 ESMC_StatePrint - Print the contents of a State

INTERFACE:

int ESMC_StatePrint(

ESMC_State state // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints the contents of a ESMC_State object.

The arguments are:

state The State to be printed.
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Part IV

Infrastructure: Fields and Grids
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15 Overview of Infrastructure Data Handling

The ESMF infrastructure data classes are part of the framework’s hierarchy of structures for handling Earth system

model data and metadata on parallel platforms. The hierarchy is in complexity; the simplest data class in the infras-

tructure represents a distributed data array and the most complex data class represents a bundle of physical fields that

are discretized on the same grid. However, the current C API does not support bundled data structures yet. Array

and Field are the two data classes offered by the ESMF C language binding. Data class methods are called both from

user-written code and from other classes internal to the framework.

Data classes are distributed over DEs, or Decomposition Elements. A DE represents a piece of a decomposition. A

DELayout is a collection of DEs with some associated connectivity that describes a specific distribution. For example,

the distribution of a grid divided into four segments in the x-dimension would be expressed in ESMF as a DELayout

with four DEs lying along an x-axis. This abstract concept enables a data decomposition to be defined in terms of

threads, MPI processes, virtual decomposition elements, or combinations of these without changes to user code. This

is a primary strategy for ensuring optimal performance and portability for codes using the ESMF for communications.

ESMF data classes provide a standard, convenient way for developers to collect together information related to model

or observational data. The information assembled in a data class includes a data pointer, a set of attributes (e.g. units,

although attributes can also be user-defined), and a description of an associated grid. The same set of information

within an ESMF data object can be used by the framework to arrange intercomponent data transfers, to perform I/O,

for communications such as gathers and scatters, for simplification of interfaces within user code, for debugging, and

for other functions. This unifies and organizes codes overall so that the user need not define different representations

of metadata for the same field for I/O and for component coupling.

Since it is critical that users be able to introduce ESMF into their codes easily and incrementally, ESMF data classes

can be created based on native Fortran pointers. Likewise, there are methods for retrieving native Fortran pointers

from within ESMF data objects. This allows the user to perform allocations using ESMF, and to retrieve Fortran

arrays later for optimized model calculations. The ESMF data classes do not have associated differential operators or

other mathematical methods.

For flexibility, it is not necessary to build an ESMF data object all at once. For example, it’s possible to create a field

but to defer allocation of the associated field data until a later time.

Key Features

Hierarchy of data structures designed specifically for the Earth system domain and high performance, parallel

computing.

Multi-use ESMF structures simplify user code overall.

Data objects support incremental construction and deferred allocation.

Native Fortran arrays can be associated with or retrieved from ESMF data objects, for ease of adoption,

convenience, and performance.

15.1 Infrastructure Data Classes

The main classes that are used for model and observational data manipulation are as follows:

• Array An ESMF Array contains a data pointer, information about its associated datatype, precision, and dimen-

sion.

Data elements in Arrays are partitioned into categories defined by the role the data element plays in distributed

halo operations. Haloing - sometimes called ghosting - is the practice of copying portions of array data to mul-

tiple memory locations to ensure that data dependencies can be satisfied quickly when performing a calculation.
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ESMF Arrays contain an exclusive domain, which contains data elements updated exclusively and definitively

by a given DE; a computational domain, which contains all data elements with values that are updated by the

DE in computations; and a total domain, which includes both the computational domain and data elements from

other DEs which may be read but are not updated in computations.

• Field A Field holds model and/or observational data together with its underlying grid or set of spatial locations.

It provides methods for configuration, initialization, setting and retrieving data values, data I/O, data regridding,

and manipulation of attributes.

15.2 Design and Implementation Notes

1. In communication methods such as Regrid, Redist, Scatter, etc. the Field code cascades down through the Array

code, so that the actual implementation exist in only one place in the source.
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16 Field Class

16.1 Description

An ESMF Field represents a physical field, such as temperature. The motivation for including Fields in ESMF is that

bundles of Fields are the entities that are normally exchanged when coupling Components.

The ESMF Field class contains distributed and discretized field data, a reference to its associated grid, and metadata.

The Field class stores the grid staggering for that physical field. This is the relationship of how the data array of a field

maps onto a grid (e.g. one item per cell located at the cell center, one item per cell located at the NW corner, one item

per cell vertex, etc.). This means that different Fields which are on the same underlying ESMF Grid but have different

staggerings can share the same Grid object without needing to replicate it multiple times.

Fields can be added to States for use in inter-Component data communications.

Field communication capabilities include: data redistribution, regridding, scatter, gather, sparse-matrix multiplication,

and halo update. These are discussed in more detail in the documentation for the specific method calls. ESMF does

not currently support vector fields, so the components of a vector field must be stored as separate Field objects.

16.2 Constants

16.2.1 ESMC_REGRIDMETHOD

DESCRIPTION:

Specify which interpolation method to use during regridding.

The type of this flag is:

type(ESMC_RegridMethod_Flag)

The valid values are:

ESMC_REGRIDMETHOD_BILINEAR Bilinear interpolation. Destination value is a linear combination of the

source values in the cell which contains the destination point. The weights for the linear combination are based

on the distance of destination point from each source value.

ESMC_REGRIDMETHOD_PATCH Higher-order patch recovery interpolation. Destination value is a weighted

average of 2D polynomial patches constructed from cells surrounding the source cell which contains the des-

tination point. This method typically results in better approximations to values and derivatives than bilinear.

However, because of its larger stencil, it also results in a much larger interpolation matrix (and thus routeHan-

dle) than the bilinear.

ESMC_REGRIDMETHOD_NEAREST_STOD In this version of nearest neighbor interpolation each destination

point is mapped to the closest source point. A given source point may go to multiple destination points, but no

destination point will receive input from more than one source point.

ESMC_REGRIDMETHOD_NEAREST_DTOS In this version of nearest neighbor interpolation each source point

is mapped to the closest destination point. A given destination point may receive input from multiple source

points, but no source point will go to more than one destination point.

ESMC_REGRIDMETHOD_CONSERVE First-order conservative interpolation. The main purpose of this method

is to preserve the integral of the field between the source and destination. Will typically give a less accurate

approximation to the individual field values than the bilinear or patch methods. The value of a destination cell
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is calculated as the weighted sum of the values of the source cells that it overlaps. The weights are determined

by the amount the source cell overlaps the destination cell. Needs corner coordinate values to be provided in the

Grid. Currently only works for Fields created on the Grid center stagger or the Mesh element location.

ESMC_REGRIDMETHOD_CONSERVE_2ND Second-order conservative interpolation. As with first-order, pre-

serves the integral of the value between the source and destination. However, typically produces a smoother

more accurate result than first-order. Also like first-order, the value of a destination cell is calculated as the

weighted sum of the values of the source cells that it overlaps. However, second-order also includes additional

terms to take into account the gradient of the field across the source cell. Needs corner coordinate values to be

provided in the Grid. Currently only works for Fields created on the Grid center stagger or the Mesh element

location.

16.3 Use and Examples

A Field serves as an annotator of data, since it carries a description of the grid it is associated with and metadata

such as name and units. Fields can be used in this capacity alone, as convenient, descriptive containers into which

arrays can be placed and retrieved. However, for most codes the primary use of Fields is in the context of import

and export States, which are the objects that carry coupling information between Components. Fields enable data

to be self-describing, and a State holding ESMF Fields contains data in a standard format that can be queried and

manipulated.

The sections below go into more detail about Field usage.

16.3.1 Field create and destroy

Fields can be created and destroyed at any time during application execution. However, these Field methods require

some time to complete. We do not recommend that the user create or destroy Fields inside performance-critical

computational loops.

All versions of the ESMC_FieldCreate() routines require a Mesh object as input. The Mesh contains the infor-

mation needed to know which Decomposition Elements (DEs) are participating in the processing of this Field, and

which subsets of the data are local to a particular DE.

The details of how the create process happens depend on which of the variants of the ESMC_FieldCreate() call

is used.

When finished with an ESMC_Field, the ESMC_FieldDestroy method removes it. However, the objects inside

the ESMC_Field created externally should be destroyed separately, since objects can be added to more than one

ESMC_Field. For example, the same ESMF_Mesh can be referenced by multiple ESMC_Fields. In this case the

internal Mesh is not deleted by the ESMC_FieldDestroy call.

16.4 Class API

16.4.1 ESMC_FieldCreateGridArraySpec - Create a Field from Grid and ArraySpec

INTERFACE:

ESMC_Field ESMC_FieldCreateGridArraySpec(

ESMC_Grid grid, // in
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ESMC_ArraySpec arrayspec, // in

enum ESMC_StaggerLoc staggerloc, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

grid A ESMC_Grid object.

arrayspec A ESMC_ArraySpec object describing data type and kind specification.

staggerloc Stagger location of data in grid cells. The default value is ESMF_STAGGERLOC_CENTER.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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16.4.2 ESMC_FieldCreateGridTypeKind - Create a Field from Grid and typekind

INTERFACE:

ESMC_Field ESMC_FieldCreateGridTypeKind(

ESMC_Grid grid, // in

enum ESMC_TypeKind_Flag typekind, // in

enum ESMC_StaggerLoc staggerloc, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

grid A ESMC_Grid object.

typekind The ESMC_TypeKind_Flag that describes this Field data.

staggerloc Stagger location of data in grid cells. The default value is ESMF_STAGGERLOC_CENTER.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.
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[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.3 ESMC_FieldCreateMeshArraySpec - Create a Field from Mesh and ArraySpec

INTERFACE:

ESMC_Field ESMC_FieldCreateMeshArraySpec(

ESMC_Mesh mesh, // in

ESMC_ArraySpec arrayspec, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

mesh A ESMC_Mesh object.

arrayspec A ESMC_ArraySpec object describing data type and kind specification.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.
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ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.4 ESMC_FieldCreateMeshTypeKind - Create a Field from Mesh and typekind

INTERFACE:

ESMC_Field ESMC_FieldCreateMeshTypeKind(

ESMC_Mesh mesh, // in

enum ESMC_TypeKind_Flag typekind, // in

enum ESMC_MeshLoc_Flag meshloc, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

mesh A ESMC_Mesh object.

typekind The ESMC_TypeKind_Flag that describes this Field data.

meshloc The ESMC_MeshLoc_Flag that describes this Field data.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.
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ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.5 ESMC_FieldCreateLocStreamArraySpec - Create a Field from LocStream and ArraySpec

INTERFACE:

ESMC_Field ESMC_FieldCreateLocStreamArraySpec(

ESMC_LocStream locstream, // in

ESMC_ArraySpec arrayspec, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

locstream A ESMC_LocStream object.

arrayspec A ESMC_ArraySpec object describing data type and kind specification.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total

63



ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.6 ESMC_FieldCreateLocStreamTypeKind - Create a Field from LocStream and typekind

INTERFACE:

ESMC_Field ESMC_FieldCreateLocStreamTypeKind(

ESMC_LocStream locstream, // in

enum ESMC_TypeKind_Flag typekind, // in

ESMC_InterArrayInt *gridToFieldMap, // in

ESMC_InterArrayInt *ungriddedLBound, // in

ESMC_InterArrayInt *ungriddedUBound, // in

const char *name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Field object.

DESCRIPTION:

Creates a ESMC_Field object.

The arguments are:

locstream A ESMC_LocStream object.

typekind The ESMC_TypeKind_Flag that describes this Field data.
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gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.7 ESMC_FieldDestroy - Destroy a Field

INTERFACE:

int ESMC_FieldDestroy(

ESMC_Field *field // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_Field. Return code; equals ESMF_SUCCESS if there are no
errors.

The arguments are:

field Destroy contents of this ESMC_Field.
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16.4.8 ESMC_FieldGetArray - Get the internal Array stored in the Field

INTERFACE:

ESMC_Array ESMC_FieldGetArray(

ESMC_Field field, // in

int *rc // out

);

RETURN VALUE:

The ESMC_Array object stored in the ESMC_Field.

DESCRIPTION:

Get the internal Array stored in the ESMC_Field.

The arguments are:

field Get the internal Array stored in this ESMC_Field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.9 ESMC_FieldGetMesh - Get the internal Mesh stored in the Field

INTERFACE:

ESMC_Mesh ESMC_FieldGetMesh(

ESMC_Field field, // in

int *rc // out

);

RETURN VALUE:

The ESMC_Mesh object stored in the ESMC_Field.

DESCRIPTION:

Get the internal Mesh stored in the ESMC_Field.

The arguments are:

field Get the internal Mesh stored in this ESMC_Field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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16.4.10 ESMC_FieldGetPtr - Get the internal Fortran data pointer stored in the Field

INTERFACE:

void *ESMC_FieldGetPtr(

ESMC_Field field, // in

int localDe, // in

int *rc // out

);

RETURN VALUE:

The Fortran data pointer stored in the ESMC_Field.

DESCRIPTION:

Get the internal Fortran data pointer stored in the ESMC_Field.

The arguments are:

field Get the internal Fortran data pointer stored in this ESMC_Field.

localDe Local DE for which information is requested. [0,..,localDeCount-1].

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.11 ESMC_FieldGetBounds - Get the Field bounds

INTERFACE:

int ESMC_FieldGetBounds(

ESMC_Field field, // in

int *localDe,

int *exclusiveLBound,

int *exclusiveUBound,

int rank

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Get the Field bounds from the ESMC_Field.

The arguments are:
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field ESMC_Field whose bounds will be returned

localDe The local DE of the ESMC_Field (not implemented)

exclusiveLBound The exclusive lower bounds of the ESMC_Field

exclusiveUBound The exclusive upper bounds of the ESMC_Field

rank The rank of the ESMC_Field, to size the bounds arrays

16.4.12 ESMC_FieldPrint - Print the internal information of a Field

INTERFACE:

int ESMC_FieldPrint(

ESMC_Field field // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print the internal information within this ESMC_Field.

The arguments are:

field Print contents of this ESMC_Field.

16.4.13 ESMC_FieldRegridGetArea - Get the area of the cells used for

conservative interpolation

INTERFACE:

int ESMC_FieldRegridGetArea(

ESMC_Field field // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

This subroutine gets the area of the cells used for conservative interpolation for the grid object associ-
ated with areaField and puts them into areaField. If created on a 2D Grid, it must be built on
the ESMF_STAGGERLOC_CENTER stagger location. If created on a 3D Grid, it must be built on the
ESMF_STAGGERLOC_CENTER_VCENTER stagger location. If created on a Mesh, it must be built on the
ESMF_MESHLOC_ELEMENT mesh location.

The arguments are:

areaField The Field to put the area values in.

16.4.14 ESMC_FieldRegridStore - Precompute a Field regridding operation and return a RouteHandle

INTERFACE:

int ESMC_FieldRegridStore(

ESMC_Field srcField, // in

ESMC_Field dstField, // in

ESMC_InterArrayInt *srcMaskValues, // in

ESMC_InterArrayInt *dstMaskValues, // in

ESMC_RouteHandle *routehandle, // inout

enum ESMC_RegridMethod_Flag *regridmethod, // in

enum ESMC_PoleMethod_Flag *polemethod, // in

int *regridPoleNPnts, // in

enum ESMC_LineType_Flag *lineType, // in

enum ESMC_NormType_Flag *normType, // in

enum ESMC_ExtrapMethod_Flag *extrapMethod, // in

int *extrapNumSrcPnts, // in

float *extrapDistExponent, // in

int *extrapNumLevels, // in

enum ESMC_UnmappedAction_Flag *unmappedaction, // in

enum ESMC_Logical *ignoreDegenerate, // in

double **factorList, // inout

int **factorIndexList, // inout

int *numFactors, // inout

ESMC_Field *srcFracField, // inout

ESMC_Field *dstFracField); // inout

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Creates a sparse matrix operation (stored in routehandle) that contains the calculations and communications neces-
sary to interpolate from srcField to dstField. The routehandle can then be used in the call ESMC_FieldRegrid() to
interpolate between the Fields.

The arguments are:
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srcField ESMC_Field with source data.

dstField ESMC_Field with destination data.

srcMaskValues List of values that indicate a source point should be masked out. If not specified, no masking will
occur.

dstMaskValues List of values that indicate a destination point should be masked out. If not specified, no masking
will occur.

routehandle The handle that implements the regrid, to be used in ESMC_FieldRegrid().

regridmethod The type of interpolation. If not specified, defaults to ESMF_REGRIDMETHOD_BILINEAR.

polemethod Which type of artificial pole to construct on the source Grid for regridding. If not specified, defaults
to ESMF_POLEMETHOD_ALLAVG for non-conservative regrid methods, and ESMF_POLEMETHOD_NONE for
conservative methods. If not specified, defaults to ESMC_POLEMETHOD_ALLAVG.

regridPoleNPnts If polemethod is ESMC_POLEMETHOD_NPNTAVG. This parameter indicates how many points
should be averaged over. Must be specified if polemethod is ESMC_POLEMETHOD_NPNTAVG.

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument
is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 34.8 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 34.8 has the defaults by line type.

normType This argument controls the type of normalization used when generating conservative weights. This op-
tion only applies to weights generated with regridmethod=ESMF_REGRIDMETHOD_CONSERVE. If not
specified normType defaults to ESMF_NORMTYPE_DSTAREA.

[extrapMethod] The type of extrapolation. Please see Section 34.3 for a list of valid options. If not specified, defaults
to ESMC_EXTRAPMETHOD_NONE.

[extrapNumSrcPnts] The number of source points to use for the extrapolation methods that use more than one source
point (e.g. ESMC_EXTRAPMETHOD_NEAREST_IDAVG). If not specified, defaults to 8.

[extrapDistExponent] The exponent to raise the distance to when calculating weights for the
ESMC_EXTRAPMETHOD_NEAREST_IDAVG extrapolation method. A higher value reduces the influence of
more distant points. If not specified, defaults to 2.0.

[extrapNumLevels] The number of levels to output for the extrapolation methods that fill levels (e.g.
ESMC_EXTRAPMETHOD_CREEP). When a method is used that requires this, then an error will be returned
if it is not specified.

unmappedaction Specifies what should happen if there are destination points that can’t be mapped to a source cell.
Options are ESMF_UNMAPPEDACTION_ERROR or ESMF_UNMAPPEDACTION_IGNORE. If not specified,
defaults to ESMF_UNMAPPEDACTION_ERROR.

[factorList] The list of coefficients for a sparse matrix which interpolates from srcField to dstField. The array
coming out of this variable is in the appropriate format to be used in other ESMF sparse matrix multiply calls,
for example ESMC_FieldSMMStore(). The factorList array is allocated by the method and the user is
responsible for deallocating it.

[factorIndexList] The indices for a sparse matrix which interpolates from srcField to dstField. This
argument is a 2D array containing pairs of source and destination sequence indices corresponding
to the coefficients in the factorList argument. The first dimension of factorIndexList is
of size 2. factorIndexList(1,:) specifies the sequence index of the source element in the
srcField. factorIndexList(2,:) specifies the sequence index of the destination element
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in the dstField. The second dimension of factorIndexList steps through the list of pairs,
i.e. size(factorIndexList,2)==size(factorList). The array coming out of this vari-
able is in the appropriate format to be used in other ESMF sparse matrix multiply calls, for example
ESMC_FieldSMMStore(). The factorIndexList array is allocated by the method and the user is
responsible for deallocating it.

[numFactors] The number of factors returned in factorList.

[srcFracField] The fraction of each source cell participating in the regridding. Only valid when regridmethod is
ESMC_REGRIDMETHOD_CONSERVE. This Field needs to be created on the same location (e.g staggerloc) as
the srcField.

[dstFracField] The fraction of each destination cell participating in the regridding. Only valid when regridmethod is
ESMF_REGRIDMETHOD_CONSERVE. This Field needs to be created on the same location (e.g staggerloc) as
the dstField.

16.4.15 ESMC_FieldRegridStoreFile - Precompute a Field regridding operation and return a RouteHandle

INTERFACE:

int ESMC_FieldRegridStoreFile(

ESMC_Field srcField, // in

ESMC_Field dstField, // in

const char *filename, // in

ESMC_InterArrayInt *srcMaskValues, // in

ESMC_InterArrayInt *dstMaskValues, // in

ESMC_RouteHandle *routehandle, // inout

enum ESMC_RegridMethod_Flag *regridmethod, // in

enum ESMC_PoleMethod_Flag *polemethod, // in

int *regridPoleNPnts, // in

enum ESMC_LineType_Flag *lineType, // in

enum ESMC_NormType_Flag *normType, // in

enum ESMC_UnmappedAction_Flag *unmappedaction, // in

enum ESMC_Logical *ignoreDegenerate, // in

enum ESMC_Logical *create_rh, // in

enum ESMC_FileMode_Flag *filemode, // in

const char *srcFile, // in

const char *dstFile, // in

enum ESMC_FileFormat_Flag *srcFileType, // in

enum ESMC_FileFormat_Flag *dstFileType, // in

enum ESMC_Logical *largeFileFlag, // in

ESMC_Field *srcFracField, // out

ESMC_Field *dstFracField); // out

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Creates a sparse matrix operation (stored in routehandle) that contains the calculations and communications neces-
sary to interpolate from srcField to dstField. The routehandle can then be used in the call ESMC_FieldRegrid() to
interpolate between the Fields. The weights will be output to the file with name filename.

The arguments are:

srcField ESMC_Field with source data.

dstField ESMC_Field with destination data.

[filename] The output filename for the factorList and factorIndexList.

[srcMaskValues] List of values that indicate a source point should be masked out. If not specified, no masking will
occur.

[dstMaskValues] List of values that indicate a destination point should be masked out. If not specified, no masking
will occur.

[routehandle] The handle that implements the regrid, to be used in ESMC_FieldRegrid().

[regridmethod] The type of interpolation. If not specified, defaults to ESMC_REGRIDMETHOD_BILINEAR.

[polemethod] Which type of artificial pole to construct on the source Grid for regridding. If not specified, defaults
to ESMC_POLEMETHOD_ALLAVG for non-conservative regrid methods, and ESMC_POLEMETHOD_NONE for
conservative methods. If not specified, defaults to ESMC_POLEMETHOD_ALLAVG.

[regridPoleNPnts] If polemethod is ESMC_POLEMETHOD_NPNTAVG. This parameter indicates how many
points should be averaged over. Must be specified if polemethod is ESMC_POLEMETHOD_NPNTAVG.

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument
is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 34.8 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 34.8 has the defaults by line type.

[normType] This argument controls the type of normalization used when generating conservative weights. This
option only applies to weights generated with regridmethod=ESMC_REGRIDMETHOD_CONSERVE. If not
specified normType defaults to ESMC_NORMTYPE_DSTAREA.

[unmappedaction] Specifies what should happen if there are destination points that can’t be mapped to a source cell.
Options are ESMC_UNMAPPEDACTION_ERROR or ESMC_UNMAPPEDACTION_IGNORE. If not specified,
defaults to ESMC_UNMAPPEDACTION_ERROR.

create_rh Specifies whether or not to create a routehandle, or just write weights to file. If not specified, defaults to
ESMF_TRUE.

filemode Specifies the mode to use when creating the weight file. Options are ESMC_FILEMODE_BASIC and
ESMC_FILEMODE_WITHAUX, which will write a file that includes center coordinates of the grids. The de-
fault value is ESMC_FILEMODE_BASIC.

srcFile The name of the source file used to create the ESMC_Grid used in this regridding operation.

dstFile The name of the destination file used to create the ESMC_Grid used in this regridding operation.

srcFileType The type of the file used to represent the source grid.

dstFileType The type of the file used to represent the destination grid.
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[srcFracField] The fraction of each source cell participating in the regridding. Only valid when regridmethod is
ESMC_REGRIDMETHOD_CONSERVE. This Field needs to be created on the same location (e.g staggerloc) as
the srcField.

[dstFracField] The fraction of each destination cell participating in the regridding. Only valid when regridmethod is
ESMC_REGRIDMETHOD_CONSERVE. This Field needs to be created on the same location (e.g staggerloc) as
the dstField.

16.4.16 ESMC_FieldRegrid - Compute a regridding operation

INTERFACE:

int ESMC_FieldRegrid(

ESMC_Field srcField, // in

ESMC_Field dstField, // inout

ESMC_RouteHandle routehandle, // in

enum ESMC_Region_Flag *zeroregion); // in

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Execute the precomputed regrid operation stored in routehandle to interpolate from srcField to dstField. See
ESMF_FieldRegridStore() on how to precompute the routehandle. It is erroneous to specify the identical Field object
for srcField and dstField arguments. This call is collective across the current VM.

The arguments are:

srcField ESMC_Field with source data.

dstField ESMC_Field with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMC_REGION_TOTAL (default) the total regions of all DEs in dstField will be ini-
tialized to zero before updating the elements with the results of the sparse matrix multiplication. If
set to ESMC_REGION_EMPTY the elements in dstField will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMC_REGION_SELECT will only zero out those elements in the destination Array that will be updated by the
sparse matrix multiplication.

16.4.17 ESMC_FieldRegridRelease - Free resources used by a regridding operation

INTERFACE:
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int ESMC_FieldRegridRelease(ESMC_RouteHandle *routehandle); // inout

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Free resources used by regrid object

The arguments are:

routehandle Handle carrying the sparse matrix

16.4.18 ESMC_FieldSMMStore - Precompute a Field regridding operation and return a RouteHandle

INTERFACE:

int ESMC_FieldSMMStore(

ESMC_Field srcField, // in

ESMC_Field dstField, // in

const char *filename, // in

ESMC_RouteHandle *routehandle, // out

enum ESMC_Logical *ignoreUnmatchedIndices, // in

int *srcTermProcessing, // in

int *pipeLineDepth); // in

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Creates a sparse matrix operation (stored in routehandle) that contains the calculations and communications neces-
sary to interpolate from srcField to dstField. The routehandle can then be used in the call ESMC_FieldRegrid() to
interpolate between the Fields.

The arguments are:

srcField ESMC_Field with source data.

dstField ESMC_Field with destination data.

filename Path to the file containing weights for creating an ESMC_RouteHandle. Only "row", "col", and "S"
variables are required. They must be one-dimensionsal with dimension "n_s".

routehandle The handle that implements the regrid, to be used in ESMC_FieldRegrid().
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[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side. Note that partial sums may lead to bit-for-bit differ-
ences in the results. See section ?? for an in-depth discussion of all bit-for-bit reproducibility aspects related
to route-based communication methods. The ESMC_FieldSMMStore() method implements an auto-tuning
scheme for the srcTermProcessing parameter. The intent on the srcTermProcessing argument is
"inout" in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0
is specified, it is used for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In
this case the srcTermProcessing argument is not modified on return. If the provided argument is < 0,
the srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors. Note that the pipeline
depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect the performance
reproducibility of the exchange. The ESMC_FieldSMMStore() method implements an auto-tuning scheme
for the pipelineDepth parameter. The intent on the pipelineDepth argument is "inout" in order to
support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the pipelineDepth parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth
argument is not modified on return. If the provided argument is < 0, the pipelineDepth parameter is
determined internally using the auto-tuning scheme. In this case the pipelineDepth argument is re-set to
the internally determined value on return. Auto-tuning is also used if the optional pipelineDepth argument
is omitted.

17 Array Class

17.1 Description

The Array class is an alternative to the Field class for representing distributed, structured data. Unlike Fields, which

are built to carry grid coordinate information, Arrays can only carry information about the indices associated with

grid cells. Since they do not have coordinate information, Arrays cannot be used to calculate interpolation weights.

However, if the user can supply interpolation weights, the Array sparse matrix multiply operation can be used to apply

the weights and transfer data to the new grid. Arrays can also perform redistribution, scatter, and gather communication

operations.

Like Fields, Arrays can be added to a State and used in inter-Component data communications.

From a technical standpoint, the ESMF Array class is an index space based, distributed data storage class. It provides

DE-local memory allocations within DE-centric index regions and defines the relationship to the index space described

by the ESMF DistGrid. The Array class offers common communication patterns within the index space formalism.
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17.2 Class API

17.2.1 ESMC_ArrayCreate - Create an Array

INTERFACE:

ESMC_Array ESMC_ArrayCreate(

ESMC_ArraySpec arrayspec, // in

ESMC_DistGrid distgrid, // in

const char* name, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Array object.

DESCRIPTION:

Create an ESMC_Array object.

The arguments are:

arrayspec ESMC_ArraySpec object containing the type/kind/rank information.

distgrid ESMC_DistGrid object that describes how the Array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

[name] The name for the Array object. If not specified, i.e. NULL, a default unique name will be generated: "Ar-
rayNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.2.2 ESMC_ArrayDestroy - Destroy an Array

INTERFACE:

int ESMC_ArrayDestroy(

ESMC_Array *array // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Destroy an ESMC_Array object.

The arguments are:

array ESMC_Array object to be destroyed.

17.2.3 ESMC_ArrayGetName - Get the name of an Array

INTERFACE:

const char *ESMC_ArrayGetName(

ESMC_Array array, // in

int *rc // out

);

RETURN VALUE:

Pointer to the Array name string.

DESCRIPTION:

Get the name of the specified ESMC_Array object.

The arguments are:

array ESMC_Array object to be queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.2.4 ESMC_ArrayGetPtr - Get pointer to Array data.

INTERFACE:

void *ESMC_ArrayGetPtr(

ESMC_Array array, // in

int localDe, // in

int *rc // out

);

RETURN VALUE:

Pointer to the Array data.
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DESCRIPTION:

Get pointer to the data of the specified ESMC_Array object.

The arguments are:

array ESMC_Array object to be queried.

localDe Local De for which to data pointer is queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.2.5 ESMC_ArrayPrint - Print an Array

INTERFACE:

int ESMC_ArrayPrint(

ESMC_Array array // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specified ESMC_Array object.

The arguments are:

array ESMC_Array object to be printed.

18 ArraySpec Class

18.1 Description

An ArraySpec is a very simple class that contains type, kind, and rank information about an Array. This information

is stored in two parameters. TypeKind describes the data type of the elements in the Array and their precision. Rank

is the number of dimensions in the Array.

The only methods that are associated with the ArraySpec class are those that allow you to set and retrieve this infor-

mation.
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18.2 Class API

18.2.1 ESMC_ArraySpecGet - Get values from an ArraySpec

INTERFACE:

int ESMC_ArraySpecGet(

ESMC_ArraySpec arrayspec, // in

int *rank, // out

enum ESMC_TypeKind_Flag *typekind // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Returns information about the contents of an ESMC_ArraySpec.

The arguments are:

arrayspec The ESMC_ArraySpec to query.

rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section 34.18 for valid values.

18.2.2 ESMC_ArraySpecSet - Set values for an ArraySpec

INTERFACE:

int ESMC_ArraySpecSet(

ESMC_ArraySpec *arrayspec, // inout

int rank, // in

enum ESMC_TypeKind_Flag typekind // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Set an Array specification - typekind, and rank.

The arguments are:

79



arrayspec The ESMC_ArraySpec to set.

rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section 34.18 for valid values.

19 Grid Class

19.1 Description

The ESMF Grid class is used to describe the geometry and discretization of logically rectangular physical grids. It

also contains the description of the grid’s underlying topology and the decomposition of the physical grid across the

available computational resources. The most frequent use of the Grid class is to describe physical grids in user code

so that sufficient information is available to perform ESMF methods such as regridding.

Key Features

Representation of grids formed by logically rectangular regions, including uniform and rectilinear grids (e.g.

lat-lon grids), curvilinear grids (e.g. displaced pole grids), and grids formed by connected logically rectangu-

lar regions (e.g. cubed sphere grids).

Support for 1D, 2D, 3D, and higher dimension grids.

Distribution of grids across computational resources for parallel operations - users set which grid dimensions

are distributed.

Grids can be created already distributed, so that no single resource needs global information during the

creation process.

Options to define periodicity and other edge connectivities either explicitly or implicitly via shape shortcuts.

Options for users to define grid coordinates themselves or call prefabricated coordinate generation routines

for standard grids [NO GENERATION ROUTINES YET].

Options for incremental construction of grids.

Options for using a set of pre-defined stagger locations or for setting custom stagger locations.

19.1.1 Grid Representation in ESMF

ESMF Grids are based on the concepts described in A Standard Description of Grids Used in Earth System Models

[Balaji 2006]. In this document Balaji introduces the mosaic concept as a means of describing a wide variety of Earth

system model grids. A mosaic is composed of grid tiles connected at their edges. Mosaic grids includes simple, single

tile grids as a special case.

The ESMF Grid class is a representation of a mosaic grid. Each ESMF Grid is constructed of one or more logically

rectangular Tiles. A Tile will usually have some physical significance (e.g. the region of the world covered by one

face of a cubed sphere grid).

The piece of a Tile that resides on one DE (for simple cases, a DE can be thought of as a processor - see section on the

DELayout) is called a LocalTile. For example, the six faces of a cubed sphere grid are each Tiles, and each Tile can

be divided into many LocalTiles.

Every ESMF Grid contains a DistGrid object, which defines the Grid’s index space, topology, distribution, and con-

nectivities. It enables the user to define the complex edge relationships of tripole and other grids. The DistGrid can be

created explicitly and passed into a Grid creation routine, or it can be created implicitly if the user takes a Grid creation

shortcut. The DistGrid used in Grid creation describes the properties of the Grid cells. In addition to this one, the Grid
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internally creates DistGrids for each stagger location. These stagger DistGrids are related to the original DistGrid, but

may contain extra padding to represent the extent of the index space of the stagger. These DistGrids are what are used

when a Field is created on a Grid.

19.1.2 Supported Grids

The range of supported grids in ESMF can be defined by:

• Types of topologies and shapes supported. ESMF supports one or more logically rectangular grid Tiles with

connectivities specified between cells. For more details see section 19.1.3.

• Types of distributions supported. ESMF supports regular, irregular, or arbitrary distributions of data. For more

details see section 19.1.4.

• Types of coordinates supported. ESMF supports uniform, rectilinear, and curvilinear coordinates. For more

details see section 19.1.5.

19.1.3 Grid Topologies and Periodicity

ESMF has shortcuts for the creation of standard Grid topologies or shapes up to 3D. In many cases, these enable the

user to bypass the step of creating a DistGrid before creating the Grid. There are two sets of methods which allow

the user to do this. These two sets of methods cover the same set of topologies, but allow the user to specify them in

different ways.

The first set of these are a group of overloaded calls broken up by the number of periodic dimensions they specify.

With these the user can pick the method which creates a Grid with the number of periodic dimensions they need, and

then specify other connectivity options via arguments to the method. The following is a description of these methods:

ESMF_GridCreateNoPeriDim() Allows the user to create a Grid with no edge connections, for example, a regional

Grid with closed boundaries.

ESMF_GridCreate1PeriDim() Allows the user to create a Grid with 1 periodic dimension and supports a range of

options for what to do at the pole (see Section 19.2.4. Some examples of Grids which can be created here are

tripole spheres, bipole spheres, cylinders with open poles.

ESMF_GridCreate2PeriDim() Allows the user to create a Grid with 2 periodic dimensions, for example a torus, or

a regional Grid with doubly periodic boundaries.

More detailed information can be found in the API description of each.

The second set of shortcut methods is a set of methods overloaded under the name ESMF_GridCreate(). These

methods allow the user to specify the connectivites at the end of each dimension, by using the ESMF_GridConn_Flag

flag. The table below shows the ESMF_GridConn_Flag settings used to create standard shapes in 2D using the

ESMF_GridCreate() call. Two values are specified for each dimension, one for the low end and one for the high end

of the dimension’s index values.

2D Shape connflagDim1(1) connflagDim1(2) connflagDim2(1) connflagDim2(2)

Rectangle NONE NONE NONE NONE

Bipole Sphere POLE POLE PERIODIC PERIODIC

Tripole Sphere POLE BIPOLE PERIODIC PERIODIC

Cylinder NONE NONE PERIODIC PERIODIC

Torus PERIODIC PERIODIC PERIODIC PERIODIC
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Figure 7: Examples of regular and irregular decomposition of a grid a that is 6x6, and an arbitrary decomposition of a

grid b that is 6x3.

If the user’s grid shape is too complex for an ESMF shortcut routine, or involves more than three dimensions, a

DistGrid can be created to specify the shape in detail. This DistGrid is then passed into a Grid create call.

19.1.4 Grid Distribution

ESMF Grids have several options for data distribution (also referred to as decomposition). As ESMF Grids are cell

based, these options are all specified in terms of how the cells in the Grid are broken up between DEs.

The main distribution options are regular, irregular, and arbitrary. A regular distribution is one in which the same

number of contiguous grid cells are assigned to each DE in the distributed dimension. An irregular distribution is one

in which unequal numbers of contiguous grid cells are assigned to each DE in the distributed dimension. An arbitrary

distribution is one in which any grid cell can be assigned to any DE. Any of these distribution options can be applied

to any of the grid shapes (i.e., rectangle) or types (i.e., rectilinear). Support for arbitrary distribution is limited in the

current version of ESMF.

Figure 7 illustrates options for distribution.

A distribution can also be specified using the DistGrid, by passing object into a Grid create call.

19.1.5 Grid Coordinates

Grid Tiles can have uniform, rectilinear, or curvilinear coordinates. The coordinates of uniform grids are equally

spaced along their axes, and can be fully specified by the coordinates of the two opposing points that define the grid’s

physical span. The coordinates of rectilinear grids are unequally spaced along their axes, and can be fully specified

by giving the spacing of grid points along each axis. The coordinates of curvilinear grids must be specified by giving

the explicit set of coordinates for each grid point. Curvilinear grids are often uniform or rectilinear grids that have

been warped; for example, to place a pole over a land mass so that it does not affect the computations performed on

an ocean model grid. Figure 8 shows examples of each type of grid.

Each of these coordinate types can be set for each of the standard grid shapes described in section 19.1.3.

The table below shows how examples of common single Tile grids fall into this shape and coordinate taxonomy. Note

that any of the grids in the table can have a regular or arbitrary distribution.
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Uniform grid Rectilinear grid Curvilinear grid

Figure 8: Types of logically rectangular grid tiles. Red circles show the values needed to specify grid coordinates for

each type.

Uniform Rectilinear Curvilinear

Sphere Global uniform lat-lon grid Gaussian grid Displaced pole grid

Rectangle Regional uniform lat-lon

grid

Gaussian grid section Polar stereographic grid sec-

tion

19.1.6 Coordinate Specification and Generation

There are two ways of specifying coordinates in ESMF. The first way is for the user to set the coordinates. The second

way is to take a shortcut and have the framework generate the coordinates.

No ESMF generation routines are currently available.

19.1.7 Staggering

Staggering is a finite difference technique in which the values of different physical quantities are placed at different

locations within a grid cell.

The ESMF Grid class supports a variety of stagger locations, including cell centers, corners, and edge centers. The

default stagger location in ESMF is the cell center, and cell counts in Grid are based on this assumption. Combinations

of the 2D ESMF stagger locations are sufficient to specify any of the Arakawa staggers. ESMF also supports staggering

in 3D and higher dimensions. There are shortcuts for standard staggers, and interfaces through which users can create

custom staggers.

As a default the ESMF Grid class provides symmetric staggering, so that cell centers are enclosed by cell perimeter

(e.g. corner) stagger locations. This means the coordinate arrays for stagger locations other than the center will have

an additional element of padding in order to enclose the cell center locations. However, to achieve other types of

staggering, the user may alter or eliminate this padding by using the appropriate options when adding coordinates to a

Grid.

19.1.8 Masking

Masking is the process whereby parts of a grid can be marked to be ignored during an operation, such as regridding.

Masking can be used on a source grid to indicate that certain portions of the grid should not be used to generate
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regridded data. This is useful, for example, if a portion of the source grid contains unusable values. Masking can also

be used on a destination grid to indicate that the portion of the field built on that part of the Grid should not receive

regridded data. This is useful, for example, when part of the grid isn’t being used (e.g. the land portion of an ocean

grid).

ESMF regrid currently supports masking for Fields built on structured Grids and element masking for Fields

built on unstructured Meshes. The user may mask out points in the source Field or destination Field or both.

To do masking the user sets mask information in the Grid or Mesh upon which the Fields passed into the

ESMC_FieldRegridStore() call are built. The srcMaskValues and dstMaskValues arguments to that

call can then be used to specify which values in that mask information indicate that a location should be masked out.

For example, if dstMaskValues is set to (/1,2/), then any location that has a value of 1 or 2 in the mask information

of the Grid or Mesh upon which the destination Field is built will be masked out.

Masking behavior differs slightly between regridding methods. For non-conservative regridding methods (e.g. bi-

linear or high-order patch), masking is done on points. For these methods, masking a destination point means that

that point won’t participate in regridding (e.g. won’t be interpolated to). For these methods, masking a source point

means that the entire source cell using that point is masked out. In other words, if any corner point making up

a source cell is masked then the cell is masked. For conservative regridding methods (e.g. first-order conserva-

tive) masking is done on cells. Masking a destination cell means that the cell won’t participate in regridding (e.g.

won’t be interpolated to). Similarly, masking a source cell means that the cell won’t participate in regridding (e.g.

won’t be interpolated from). For any type of interpolation method (conservative or non-conservative) the masking is

set on the location upon which the Fields passed into the regridding call are built. For example, if Fields built on

ESMC_STAGGERLOC_CENTER are passed into the ESMC_FieldRegridStore() call then the masking should

also be set on ESMC_STAGGERLOC_CENTER.

19.2 Constants

19.2.1 ESMC_COORDSYS

DESCRIPTION:

A set of values which indicates in which system the coordinates in the Grid are. This value is useful both to indicate

to other users the type of the coordinates, but also to control how the coordinates are interpreted in regridding methods

(e.g. ESMC_FieldRegridStore()).

The type of this flag is:

type(ESMC_CoordSys_Flag)

The valid values are:

ESMC_COORDSYS_CART Cartesian coordinate system. In this system, the cartesian coordinates are mapped

to the Grid coordinate dimensions in the following order: x,y,z. (E.g. using coordDim=2 in

ESMC_GridGetCoord() references the y dimension)

ESMC_COORDSYS_SPH_DEG Spherical coordinates in degrees. In this system, the spherical coordinates

are mapped to the Grid coordinate dimensions in the following order: longitude, latitude, radius. (E.g.

using coordDim=2 in ESMC_GridGetCoord() references the latitude dimension) Note, however, that

ESMC_FieldRegridStore() currently just supports longitude and latitude (i.e. with this system, only Grids of

dimension 2 are supported in the regridding).

ESMC_COORDSYS_SPH_RAD Spherical coordinates in radians. In this system, the spherical coordinates

are mapped to the Grid coordinate dimensions in the following order: longitude, latitude, radius. (E.g.

using coordDim=2 in ESMC_GridGetCoord() references the latitude dimension) Note, however, that
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ESMC_FieldRegridStore() currently just supports longitude and latitude (i.e. with this system, only Grids of

dimension 2 are supported in the regridding).

19.2.2 ESMC_GRIDITEM

DESCRIPTION:

The ESMC Grid can contain other kinds of data besides coordinates. This data is referred to as Grid “items”.

Some items may be used by ESMC for calculations involving the Grid. The following are the valid values of

ESMC_GridItem_Flag.

The type of this flag is:

type(ESMC_GridItem_Flag)

The valid values are:

Item Label Type Restriction Type Default ESMC Uses Controls

ESMC_GRIDITEM_MASK ESMC_TYPEKIND_I4 ESMC_TYPEKIND_I4 YES Masking in Regrid

ESMC_GRIDITEM_AREA NONE ESMC_TYPEKIND_R8 YES Conservation in Regrid

19.2.3 ESMC_GRIDSTATUS

DESCRIPTION:

The ESMC Grid class can exist in two states. These states are present so that the library code can detect if a Grid has

been appropriately setup for the task at hand. The following are the valid values of ESMC_GRIDSTATUS.

The type of this flag is:

type(ESMC_GridStatus_Flag)

The valid values are:

ESMC_GRIDSTATUS_EMPTY: Status after a Grid has been created with ESMC_GridEmptyCreate. A Grid

object container is allocated but space for internal objects is not. Topology information and coordinate informa-

tion is incomplete. This object can be used in ESMC_GridEmptyComplete() methods in which additional

information is added to the Grid.

ESMC_GRIDSTATUS_COMPLETE: The Grid has a specific topology and distribution, but incomplete coordi-

nate arrays. The Grid can be used as the basis for allocating a Field, and coordinates can be added via

ESMC_GridCoordAdd() to allow other functionality.

19.2.4 ESMC_POLEKIND

DESCRIPTION:

This type describes the type of connection that occurs at the pole when a Grid is created with

ESMC_GridCreate1PeriodicDim().

The type of this flag is:

type(ESMC_PoleKind_Flag)

The valid values are:

ESMC_POLEKIND_NONE No connection at pole.
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Dim. 2

Dim. 1

Figure 9: 2D Predefined Stagger Locations

ESMC_POLEKIND_MONOPOLE This edge is connected to itself. Given that the edge is n elements long, then

element i is connected to element i+n/2.

ESMC_POLEKIND_BIPOLE This edge is connected to itself. Given that the edge is n elements long, element i is

connected to element n-i+1.

19.2.5 ESMC_STAGGERLOC

DESCRIPTION:

In the ESMC Grid class, data can be located at different positions in a Grid cell. When setting or retrieving coordinate

data the stagger location is specified to tell the Grid method from where in the cell to get the data. Although the user

may define their own custom stagger locations, ESMC provides a set of predefined locations for ease of use. The

following are the valid predefined stagger locations.

The 2D predefined stagger locations (illustrated in figure 9) are:

ESMC_STAGGERLOC_CENTER: The center of the cell.

ESMC_STAGGERLOC_CORNER: The corners of the cell.

ESMC_STAGGERLOC_EDGE1: The edges offset from the center in the 1st dimension.

ESMC_STAGGERLOC_EDGE2: The edges offset from the center in the 2nd dimension.

The 3D predefined stagger locations (illustrated in figure 10) are:
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Figure 10: 3D Predefined Stagger Locations

ESMC_STAGGERLOC_CENTER_VCENTER: The center of the 3D cell.

ESMC_STAGGERLOC_CORNER_VCENTER: Half way up the vertical edges of the cell.

ESMC_STAGGERLOC_EDGE1_VCENTER: The center of the face bounded by edge 1 and the vertical dimen-

sion.

ESMC_STAGGERLOC_EDGE2_VCENTER: The center of the face bounded by edge 2 and the vertical dimen-

sion.

ESMC_STAGGERLOC_CORNER_VFACE: The corners of the 3D cell.

ESMC_STAGGERLOC_EDGE1_VFACE: The center of the edges of the 3D cell parallel offset from the center in

the 1st dimension.

ESMC_STAGGERLOC_EDGE2_VFACE: The center of the edges of the 3D cell parallel offset from the center in

the 2nd dimension.

ESMC_STAGGERLOC_CENTER_VFACE: The center of the top and bottom face. The face bounded by the 1st

and 2nd dimensions.

19.2.6 ESMC_FILEFORMAT

DESCRIPTION:

This option is used by ESMC_GridCreateFromFile to specify the type of the input grid file.

The type of this flag is:
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type(ESMC_FileFormat_Flag)

The valid values are:

ESMC_FILEFORMAT_SCRIP SCRIP format grid file. The SCRIP format is the format accepted by the SCRIP

regridding tool [1]. For Grid creation, files of this type only work when the grid_rank in the file is equal to

2.

ESMC_FILEFORMAT_GRIDSPEC a single tile grid file comforming with the proposed CF-GRIDSPEC conven-

tions.

19.3 Restrictions and Future Work

• Grids with factorized coordinates can only be redisted when they are 2D. Using the ESMF_GridCreate()

interface that allows the user to create a copy of an existing Grid with a new distribution will give incorrect

results when used on a Grid with 3 or more dimensions and whose coordinate arrays are less than the full

dimension of the Grid (i.e. it contains factorized coordinates).

• 7D limit. Only grids up to 7D will be supported.

• Future adaptation. Currently Grids are created and then remain unchanged. In the future, it would be useful

to provide support for the various forms of grid adaptation. This would allow the grids to dynamically change

their resolution to more closely match what is needed at a particular time and position during a computation for

front tracking or adaptive meshes.

• Future Grid generation. This class for now only contains the basic functionality for operating on the grid. In

the future methods will be added to enable the automatic generation of various types of grids.

19.4 Design and Implementation Notes

19.4.1 Grid Topology

The ESMF_Grid class depends upon the ESMF_DistGrid class for the specification of its topology. That is, when

creating a Grid, first an ESMF_DistGrid is created to describe the appropriate index space topology. This decision

was made because it seemed redundant to have a system for doing this in both classes. It also seems most appropriate

for the machinary for topology creation to be located at the lowest level possible so that it can be used by other

classes (e.g. the ESMF_Array class). Because of this, however, the authors recommend that as a natural part of

the implementation of subroutines to generate standard grid shapes (e.g. ESMF_GridGenSphere) a set of standard

topology generation subroutines be implemented (e.g. ESMF_DistGridGenSphere) for users who want to create

a standard topology, but a custom geometry.

19.5 Class API: General Grid Methods

19.5.1 ESMC_GridCreateNoPeriDim - Create a Grid with no periodic dimensions

INTERFACE:
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ESMC_Grid ESMC_GridCreateNoPeriDim(

ESMC_InterArrayInt *maxIndex, // in

enum ESMC_CoordSys_Flag *coordSys, // in

enum ESMC_TypeKind_Flag *coordTypeKind, // in

enum ESMC_IndexFlag *indexflag, // in

int *rc // out

);

RETURN VALUE:

type(ESMC_Grid)

DESCRIPTION:

This call creates an ESMC_Grid with no periodic dimensions.

The arguments are:

maxIndex The upper extent of the grid array.

coordSys The coordinated system of the grid coordinate data. If not specified then defaults to
ESMF_COORDSYS_SPH_DEG.

coordTypeKind The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

indexflag Indicates the indexing scheme to be used in the new Grid. If not present, defaults to
ESMC_INDEX_DELOCAL.

rc Return code; equals ESMF_SUCCESS if there are no errors.

19.5.2 ESMC_GridCreate1PeriDim - Create a Grid with 1 periodic dimension

INTERFACE:

ESMC_Grid ESMC_GridCreate1PeriDim(

ESMC_InterArrayInt *maxIndex, // in

ESMC_InterArrayInt *polekindflag, // in

int *periodicDim, // in

int *poleDim, // in

enum ESMC_CoordSys_Flag *coordSys, // in

enum ESMC_TypeKind_Flag *coordTypeKind, // in

enum ESMC_IndexFlag *indexflag, // in

int *rc // out

);

RETURN VALUE:

type(ESMC_Grid)
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DESCRIPTION:

This call creates an ESMC_Grid with 1 periodic dimension.

The arguments are:

maxIndex The upper extent of the grid array.

polekindflag Two item array which specifies the type of connection which occurs at the pole. polekindflag(1) the
connection that occurs at the minimum end of the index dimension. polekindflag(2) the connection that occurs
at the maximum end of the index dimension. If not specified, the default is ESMF_POLETYPE_MONOPOLE
for both.

periodicDim The periodic dimension. If not specified, defaults to 1.

poleDim The dimension at which the poles are located at the ends. If not specified, defaults to 2.

coordSys The coordinated system of the grid coordinate data. If not specified then defaults to
ESMF_COORDSYS_SPH_DEG.

coordTypeKind The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

indexflag Indicates the indexing scheme to be used in the new Grid. If not present, defaults to
ESMC_INDEX_DELOCAL.

rc Return code; equals ESMF_SUCCESS if there are no errors.

19.5.3 ESMC_GridCreateCubedSphere - Create a cubed sphere Grid

INTERFACE:

ESMC_Grid ESMC_GridCreateCubedSphere(

int *tilesize, // in

ESMC_InterArrayInt *regDecompPTile, // in

//ESMC_InterArrayInt *decompFlagPTile, // in

//ESMC_InterArrayInt *deLabelList, // in

//ESMC_DELayout *delayout, // in

ESMC_InterArrayInt *staggerLocList, // in

const char *name, // in

int *rc); // out

RETURN VALUE:

type(ESMC_Grid)

DESCRIPTION:

Create a six-tile ESMC_Grid for a cubed sphere grid using regular decomposition. Each tile can have different
decomposition. The grid coordinates are generated based on the algorithm used by GEOS-5. The tile resolution is
defined by tileSize.

The arguments are:
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tilesize The number of elements on each side of the tile of the cubed sphere grid.

regDecompPTile List of DE counts for each dimension. The second index steps through the tiles. The total deCount
is determined as the sum over the products of regDecompPTile elements for each tile. By default every tile
is decomposed in the same way. If the total PET count is less than 6, one tile will be assigned to one DE and the
DEs will be assigned to PETs sequentially, therefore, some PETs may have more than one DE. If the total PET
count is greater than 6, the total number of DEs will be a multiple of 6 and less than or equal to the total PET
count. For instance, if the total PET count is 16, the total DE count will be 12 with each tile decomposed into
1x2 blocks. The 12 DEs are mapped to the first 12 PETs and the remaining 4 PETs have no DEs locally, unless
an optional delayout is provided.

staggerLocList The list of stagger locations to fill with coordinates. Only ESMF_STAGGERLOC_CENTER and
ESMF_STAGGERLOC_CORNER are supported. If not present, no coordinates will be added or filled.

name The name of the ESMC_Grid.

rc Return code; equals ESMF_SUCCESS if there are no errors.

19.5.4 ESMC_GridCreateFromFile - Create a Grid from a NetCDF file specification.

INTERFACE:

ESMC_Grid ESMC_GridCreateFromFile(const char *filename, int fileTypeFlag,

int *regDecomp, int *decompflag,

int *isSphere, ESMC_InterArrayInt *polekindflag,

int *addCornerStagger,

int *addUserArea, enum ESMC_IndexFlag *indexflag,

int *addMask, const char *varname,

const char **coordNames, int *rc);

RETURN VALUE:

type(ESMC_Grid)

DESCRIPTION:

This function creates a ESMC_Grid object from the specification in a NetCDF file.

The arguments are:

filename The NetCDF Grid filename.

fileTypeFlag The Grid file format, please see Section 19.2.6 for a list of valid options.

regDecomp A 2 element array specifying how the grid is decomposed. Each entry is the number of decounts for
that dimension. The total decounts cannot exceed the total number of PETs. In other word, at most one DE is
allowed per processor. If not specified, the default decomposition will be petCountx1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 34.3 for a full
description of the possible options.
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[isSphere] Set to 1 for a spherical grid, or 0 for regional. Defaults to 1.

polekindflag Two item array which specifies the type of connection which occurs at the pole. polekindflag(1) the
connection that occurs at the minimum end of the index dimension. polekindflag(2) the connection that occurs
at the maximum end of the index dimension. If not specified, the default is ESMF_POLETYPE_MONOPOLE
for both.

[addCornerStagger] Set to 1 to use the information in the grid file to add the Corner stagger to the Grid. The
coordinates for the corner stagger are required for conservative regridding. If not specified, defaults to 0.

[addUserArea] Set to 1 to read in the cell area from the Grid file; otherwise, ESMF will calculate it. This feature is
only supported when the grid file is in the SCRIP format.

indexflag Indicates the indexing scheme to be used in the new Grid. If not present, defaults to
ESMC_INDEX_DELOCAL.

[addMask] Set to 1 to generate the mask using the missing_value attribute defined in ’varname’. This flag is only
needed when the grid file is in the GRIDSPEC format.

[varname] If addMask is non-zero, provide a variable name stored in the grid file and the mask will be generated
using the missing value of the data value of this variable. The first two dimensions of the variable has to be the
longitude and the latitude dimension and the mask is derived from the first 2D values of this variable even if this
data is 3D, or 4D array.

[coordNames] A two-element array containing the longitude and latitude variable names in a GRIDSPEC file if there
are multiple coordinates defined in the file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.5.5 ESMC_GridDestroy - Destroy a Grid

INTERFACE:

int ESMC_GridDestroy(

ESMC_Grid *grid // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy the Grid.

The arguments are:

grid Grid object whose memory is to be freed.
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19.5.6 ESMC_GridAddItem - Add items to a Grid

INTERFACE:

int ESMC_GridAddItem(

ESMC_Grid grid, // in

enum ESMC_GridItem_Flag itemflag, // in

enum ESMC_StaggerLoc staggerloc // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add an item (e.g. a mask) to the Grid.

The arguments are:

grid Grid object to which the coordinates will be added

itemflag The grid item to add.

staggerloc The stagger location to add.

19.5.7 ESMC_GridGetItem - Get item from a Grid

INTERFACE:

void * ESMC_GridGetItem(

ESMC_Grid grid, // in

enum ESMC_GridItem_Flag itemflag, // in

enum ESMC_StaggerLoc staggerloc, // in

int *localDE, // in

int *rc // out

);

RETURN VALUE:

A pointer to the item data.

DESCRIPTION:

Get a pointer to item data (e.g. mask data) in the Grid.

The arguments are:
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grid Grid object from which to obtain the coordinates.

itemflag The grid item to add.

staggerloc The stagger location to add.

localDE The local decompositional element. If not present, defaults to 0.

rc Return code; equals ESMF_SUCCESS if there are no errors.

19.5.8 ESMC_GridAddCoord - Add coordinates to a Grid

INTERFACE:

int ESMC_GridAddCoord(

ESMC_Grid grid, // in

enum ESMC_StaggerLoc staggerloc // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add coordinates to the Grid.

The arguments are:

grid Grid object to which the coordinates will be added

staggerloc The stagger location to add.

19.5.9 ESMC_GridGetCoord - Get coordinates from a Grid

INTERFACE:

void * ESMC_GridGetCoord(

ESMC_Grid grid, // in

int coordDim, // in

enum ESMC_StaggerLoc staggerloc, // in

int *localDE,

int *exclusiveLBound, // out

int *exclusiveUBound, // out

int *rc // out

);
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RETURN VALUE:

A pointer to coordinate data in the Grid.

DESCRIPTION:

Get a pointer to coordinate data in the Grid.

The arguments are:

grid Grid object from which to obtain the coordinates.

coordDim The coordinate dimension from which to get the data.

staggerloc The stagger location to add.

localDE The local decompositional element. If not present, defaults to 0.

exclusiveLBound Upon return this holds the lower bounds of the exclusive region. This bound must be allocated to
be of size equal to the coord dimCount.

exclusiveUBound Upon return this holds the upper bounds of the exclusive region. This bound must be allocated to
be of size equal to the coord dimCount.

rc Return code; equals ESMF_SUCCESS if there are no errors.

19.5.10 ESMC_GridGetCoordBounds - Get coordinate bounds from a Grid

INTERFACE:

int ESMC_GridGetCoordBounds(

ESMC_Grid grid, // in

enum ESMC_StaggerLoc staggerloc, // in

int *localDE, // in

int *exclusiveLBound, // out

int *exclusiveUBound, // out

int *rc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Get coordinates bounds from the Grid.

The arguments are:
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grid Grid object from which to obtain the coordinates.

staggerloc The stagger location to add.

localDE The local decompositional element. If not present, defaults to 0.

exclusiveLBound Upon return this holds the lower bounds of the exclusive region. This bound must be allocated to
be of size equal to the coord dimCount.

exclusiveUBound Upon return this holds the upper bounds of the exclusive region. This bound must be allocated to
be of size equal to the coord dimCount.

rc Return code; equals ESMF_SUCCESS if there are no errors.

20 Mesh Class

20.1 Description

Unstructured grids are commonly used in the computational solution of Partial Differential equations. These are

especially useful for problems that involve complex geometry, where using the less flexible structured grids can result

in grid representation of regions where no computation is needed. Finite element and finite volume methods map

naturally to unstructured grids and are used commonly in hydrology, ocean modeling, and many other applications.

In order to provide support for application codes using unstructured grids, the ESMF library provides a class for

representing unstructured grids called the Mesh. Fields can be created on a Mesh to hold data. In Fortran,

Fields created on a Mesh can also be used as either the source or destination or both of an interpolation (i.e. an

ESMF_FieldRegridStore() call). This capability is currently not supported with the C interface, however, if

the C Field is passed via a State to a component written in Fortran then the regridding can be performed there. The

rest of this section describes the Mesh class and how to create and use them in ESMF.

20.1.1 Mesh Representation in ESMF

A Mesh in ESMF is described in terms of nodes and elements. A node is a point in space which represents where the

coordinate information in a Mesh is located. An element is a higher dimensional shape constructed of nodes. Elements

give a Mesh its shape and define the relationship of the nodes to one another. Field data may be located on a Mesh’s

nodes.

20.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by several factors: dimension, element types, and distribution.

ESMF currently only supports Meshes whose number of coordinate dimensions (spatial dimension) is 2 or 3. The

dimension of the elements in a Mesh (parametric dimension) must be less than or equal to the spatial dimension, but

also must be either 2 or 3. This means that an ESMF mesh may be either 2D elements in 2D space, 3D elements in

3D space, or a manifold constructed of 2D elements embedded in 3D space.

ESMF currently supports two types of elements for each Mesh parametric dimension. For a parametric dimension of

2 the supported element types are triangles or quadrilaterals. For a parametric dimension of 3 the supported element

types are tetrahedrons and hexahedrons. See Section 20.2.1 for diagrams of these. The Mesh supports any combination

of element types within a particular dimension, but types from different dimensions may not be mixed, for example, a

Mesh cannot be constructed of both quadrilaterals and tetrahedra.
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ESMF currently only supports distributions where every node on a PET must be a part of an element on that PET. In

other words, there must not be nodes without an element on a PET.

20.2 Constants

20.2.1 ESMC_MESHELEMTYPE

DESCRIPTION:

An ESMF Mesh can be constructed from a combination of different elements. The type of elements that can be used

in a Mesh depends on the Mesh’s parametric dimension, which is set during Mesh creation. The following are the

valid Mesh element types for each valid Mesh parametric dimension (2D or 3D) .

3 4 ---------- 3

/ \ | |

/ \ | |

/ \ | |

/ \ | |

/ \ | |

1 --------- 2 1 ---------- 2

ESMC_MESHELEMTYPE_TRI ESMC_MESHELEMTYPE_QUAD

2D element types (numbers are the order for elementConn during

Mesh create)

For a Mesh with parametric dimension of 2 the valid element types (illustrated above) are:

Element Type Number of Nodes Description

ESMC_MESHELEMTYPE_TRI 3 A triangle

ESMC_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)

3 8---------------7

/|\ /| /|

/ | \ / | / |

/ | \ / | / |

/ | \ / | / |

/ | \ 5---------------6 |

4-----|-----2 | | | |

\ | / | 4----------|----3

\ | / | / | /

\ | / | / | /

\ | / | / | /

\|/ |/ |/

1 1---------------2
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ESMC_MESHELEMTYPE_TETRA ESMC_MESHELEMTYPE_HEX

3D element types (numbers are the order for elementConn during

Mesh create)

For a Mesh with parametric dimension of 3 the valid element types (illustrated above) are:

Element Type Number of Nodes Description

ESMC_MESHELEMTYPE_TETRA 4 A tetrahedron (CAN’T BE USED IN REGRID)

ESMC_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

20.2.2 ESMF_FILEFORMAT

DESCRIPTION:

This option is used by ESMF_MeshCreate to specify the type of the input grid file.

The type of this flag is:

type(ESMF_FileFormat_Flag)

The valid values are:

ESMF_FILEFORMAT_SCRIP SCRIP format grid file. The SCRIP format is the format accepted by the SCRIP

regridding tool [1]. For Mesh creation, files of this type only work when the grid_rank in the file is equal to

1.

ESMF_FILEFORMAT_ESMFMESH ESMF unstructured grid file format. This format was developed by the

ESMF team to match the capabilities of the Mesh class and to be efficient to convert to that class.

ESMF_FILEFORMAT_UGRID CF-convention unstructured grid file format. This format is a proposed extension

to the CF-conventions for unstructured grid data model. Currently, only the 2D flexible mesh topology is

supported in ESMF.

20.3 Class API

20.3.1 ESMC_MeshGetMOAB - Query if the MOAB mesh backend is enabled

INTERFACE:

void ESMC_MeshGetMOAB(

bool *moabOn,

int *rc

);

RETURN VALUE:

None
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DESCRIPTION:

This call will query whether or not the MOAB mesh backend is enabled.

The arguments are:

moabOn This parameter will receive a boolean value indicating if MOAB is enabled.

rc Return code; equals ESMF_SUCCESS if there are no errors.

20.3.2 ESMC_MeshSetMOAB - Toggle the MOAB mesh backend

INTERFACE:

void ESMC_MeshSetMOAB(

bool moabOn,

int *rc

);

RETURN VALUE:

None

DESCRIPTION:

This call will toggle the MOAB mesh backend.

The arguments are:

moabOn This parameter will hold a boolean value to indicate the setting for the MOAB mesh back end (on or off).

rc Return code; equals ESMF_SUCCESS if there are no errors.

20.3.3 ESMC_MeshAddElements - Add elements to a Mesh

INTERFACE:

int ESMC_MeshAddElements(

ESMC_Mesh mesh, // inout

int elementCount, // in

int *elementIds, // in

int *elementTypes, // in

int *elementConn, // in

int *elementMask, // in

double *elementArea, // in
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double *elementCoords // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This call is the third and last part of the three part mesh create sequence and should be called after the mesh is created
with ESMF_MeshCreate() (20.3.5) and after the nodes are added with ESMF_MeshAddNodes() (20.3.4). This
call adds the elements to the mesh and finalizes the create. After this call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be used in a ESMF_FieldRegridStore() call.

The parameters to this call elementIds, elementTypes, and elementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location in elementIds and elementTypes.
Each entry in elementConn consists of the list of nodes used to create that element, so the connections for element e
in the elementIds array will start at number_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · ·+ number_of_nodes_in_element(e− 1) + 1 in elementConn.

mesh Mesh object.

elementCount The number of elements on this PET.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array of size elementCount.

elementTypes An array containing the types of the elements to be created on this PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 20.2.1 for the list of options. This
input consists of a 1D array of size elementCount.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this PET by the previous ESMC_MeshAddNodes()
call. In other words, an entry of 1 indicates that this element contains the node described by nodeIds(1),
nodeCoords(1), etc. passed into the ESMC_MeshAddNodes() call on this PET. It is also important to
note that the order of the nodes in an element connectivity list matters. Please see Section 20.2.1 for diagrams
illustrating the correct order of nodes in a element. This input consists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The number of nodes in each element is implied by its
element type in elementTypes. The nodes for each element are in sequence in this array (e.g. the nodes for
element 1 are elementConn(1), elementConn(2), etc.).

[elementMask] An array containing values which can be used for element masking. Which values indicate masking
are chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore() call. This input
consists of a 1D array the size of the number of elements on this PET. If not specified (i.e. NULL is passed in),
then no masking will occur.

[elementArea] An array containing element areas. This input consists of a 1D array the size of the number of elements
on this PET. If not specified (i.e. NULL is passed in), the element areas are internally calculated.

[elementCoords] An array containing the physical coordinates of the elements to be created on this PET. This input
consists of a 1D array the size of the number of elements on this PET times the Mesh’s spatial dimension
(spatialDim). The coordinates in this array are ordered so that the coordinates for an element lie in sequence
in memory. (e.g. for a Mesh with spatial dimension 2, the coordinates for element 1 are in elementCoords(1)
and elementCoords(2), the coordinates for element 2 are in elementCoords(3) and elementCoords(4), etc.).
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20.3.4 ESMC_MeshAddNodes - Add nodes to a Mesh

INTERFACE:

int ESMC_MeshAddNodes(

ESMC_Mesh mesh, // inout

int nodeCount, // in

int *nodeIds, // in

double *nodeCoords, // in

int *nodeOwners, // in

int *nodeMask // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This call is the second part of the three part mesh create sequence and should be called after the mesh’s dimen-
sions are set using ESMC_MeshCreate(). This call adds the nodes to the mesh. The next step is to call
ESMC_MeshAddElements() (20.3.5).

The parameters to this call nodeIds, nodeCoords, and nodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location in nodeIds and nodeOwners. Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for node n in the nodeIds array will
start at (n− 1) ∗ spatialDim+ 1.

mesh Mesh object.

nodeCount The number of nodes on this PET.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D array
the size of the number of nodes on this PET (i.e. nodeCount).

nodeCoords An array containing the physical coordinates of the nodes to be created on this PET. The coordinates in
this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g. for a Mesh with spatial
dimension 2, the coordinates for node 1 are in nodeCoords(0) and nodeCoords(1), the coordinates for node 2
are in nodeCoords(2) and nodeCoords(3), etc.). This input consists of a 1D array the size of nodeCount times
the Mesh’s spatial dimension (spatialDim).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one. Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET (i.e. nodeCount).

20.3.5 ESMC_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:
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ESMC_Mesh ESMC_MeshCreate(

int parametricDim, // in

int spatialDim, // in

enum ESMC_CoordSys_Flag *coordSys, // in

int *rc // out

);

RETURN VALUE:

type(ESMC_Mesh) :: ESMC_MeshCreate

DESCRIPTION:

This call is the first part of the three part mesh create sequence. This call sets the dimension of the elements in the
mesh (parametricDim) and the number of coordinate dimensions in the mesh (spatialDim). The next step is
to call ESMC_MeshAddNodes() (20.3.4) to add the nodes and then ESMC_MeshAddElements() (20.3.3) to add
the elements and finalize the mesh.

The arguments are:

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimension can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

[coordSys] Set the coordinate system of the mesh. If not specified, then defaults to ESMC_COORDSYS_SPH_DEG.

rc Return code; equals ESMF_SUCCESS if there are no errors.

20.3.6 ESMC_MeshCreateFromFile - Create a Mesh from a NetCDF grid file

INTERFACE:

ESMC_Mesh ESMC_MeshCreateFromFile(

const char *filename, // in (required)

int fileTypeFlag, // in (required)

int *convertToDual, // in (optional)

int *addUserArea, // in (optional)

const char *meshname, // in (optional)

int *maskFlag, // in (optional)

const char *varname, // in (optional)

int *rc // out

);

RETURN VALUE:

type(ESMC_Mesh) :: ESMC_MeshCreateFromFile
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DESCRIPTION:

Method to create a Mesh object from a NetCDF file in either SCRIP, UGRID, or ESMF file formats.

The required arguments are:

filename The name of the grid file

filetypeflag The file type of the grid file to be read, please see Section 20.2.2 for a list of valid options.

[convertToDual] if 1, the mesh will be converted to its dual. If not specified, defaults to 0. Converting to dual is only
supported with file type ESMF_FILEFORMAT_SCRIP.

[addUserArea] if 1, the cell area will be read in from the GRID file. This feature is only supported when the grid file
is in the SCRIP or ESMF format. If not specified, defaults to 0.

[meshname] The dummy variable for the mesh metadata in the UGRID file if the filetypeflag is
ESMF_FILEFORMAT_UGRID. If not specified, defaults to empty string.

[maskFlag] An enumerated integer that, if specified, tells whether a mask in a UGRID file should be defined on the
nodes (MeshLoc.NODE) or elements (MeshLoc.ELEMENT) of the mesh. If specified, generate the mask using
the missing_value attribute defined in ’varname’. This flag is only supported when the grid file is in the UGRID
format. If not specified, defaults to no mask.

[varname] If maskFlag is specified, provide a variable name stored in the UGRID file and the mask will be generated
using the missing value of the data value of this variable. The first two dimensions of the variable has to be the
the longitude and the latitude dimension and the mask is derived from the first 2D values of this variable even if
this data is 3D, or 4D array. If not specified, defaults to empty string.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

20.3.7 ESMC_MeshGetCoord - Get lat/lon coordinates from a Mesh

INTERFACE:

void ESMC_MeshGetCoord(

ESMC_Mesh mesh_in, // in (required)

double *nodeCoord, // out

int *num_nodes, // out

int *num_dims, // out

int *rc // out

);

RETURN VALUE:

None

DESCRIPTION:

This call returns the node coordinates of the given ESMC_Mesh in the provided nodeCoord buffer of doubles. At
completion, this buffer is a 1-D array with the coordinates for a given node in adjacent indices. For example, for
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d-dimensional coordinates, the first d values in the returned array are the coordinates for the first node, the second d
values are the coordinates for the second node, etc.

The arguments are:

mesh_in Mesh object.

nodeCoord Pointer to doubles. The node coordinates are returned here.

num_nodes Pointer to an integer. The number of nodes found in the input Mesh is returned here.

num_dims Pointer to an integer. The number of coordinate dimensions is returned here.

rc Return code; equals ESMF_SUCCESS if there are no errors.

20.3.8 ESMC_MeshGetElemCoord - Get lat/lon element center coordinates from a Mesh

INTERFACE:

void ESMC_MeshGetElemCoord(

ESMC_Mesh mesh_in, // in (required)

double *elemCoord, // out

int *num_elems, // out

int *num_dims, // out

int *rc // out

);

RETURN VALUE:

None

DESCRIPTION:

This call returns the element coordinates of the given ESMC_Mesh in the provided elemCoord buffer of doubles.
At completion, this buffer is a 1-D array with the coordinates for a given element in adjacent indices. For example, for
d-dimensional coordinates, the first d values in the returned array are the coordinates for the first element, the second
d values are the coordinates for the second element, etc.

The arguments are:

mesh_in Mesh object.

elemCoord Pointer to doubles. The element coordinates are returned here.

num_elems Pointer to an integer. The number of elements found in the input Mesh is returned here.

num_dims Pointer to an integer. The number of coordinate dimensions is returned here.

rc Return code; equals ESMF_SUCCESS if there are no errors.
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20.3.9 ESMC_MeshGetConnectivity - Get Mesh connectivity

INTERFACE:

void ESMC_MeshGetConnectivity(

ESMC_Mesh mesh_in, // in (required)

double *connCoord, // out

int *nodesPerElem, // out

int *rc // out

);

RETURN VALUE:

None

DESCRIPTION:

NOTE: At this time the connectivity that is returned from this call is not necessarily in the same format as how it was
passed into the creation routine.

This call returns the connectivity of the given ESMC_Mesh in the provided connCoord buffer of doubles. At
completion, this buffer is a 1-D array with the coordinates for the nodes of a given element in counterclockwise order.
The /tt nodesPerElem buffer of integers contains the number of nodes to expect per element.

The arguments are:

mesh_in Mesh object.

connCoord Pointer to doubles. The connectivity is returned here.

nodesPerElem Pointer to integers. The number of nodes in each element.

rc Return code; equals ESMF_SUCCESS if there are no errors.

20.3.10 ESMC_MeshDestroy - Destroy a Mesh

INTERFACE:

int ESMC_MeshDestroy(

ESMC_Mesh *mesh // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Destroy the Mesh. This call removes all internal memory associated with mesh. After this call mesh will no longer
be usable.

The arguments are:

mesh Mesh object whose memory is to be freed.

20.3.11 ESMC_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

int ESMC_MeshFreeMemory(

ESMC_Mesh mesh // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This call removes the portions of mesh which contain connection and coordinate information. After this call, Fields
build on mesh will no longer be usable as part of an ESMF_FieldRegridStore() operation. However, after this
call Fields built on mesh can still be used in an ESMF_FieldRegrid() operation if the routehandle was generated
beforehand. New Fields may also be built on mesh after this call.

The arguments are:

mesh Mesh object whose memory is to be freed.

20.3.12 ESMC_MeshGetElementCount - Get the number of elements in a Mesh on the current PET

INTERFACE:

int ESMC_MeshGetElementCount(

ESMC_Mesh mesh, // in

int *elementCount // out

);

RETURN VALUE:
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Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of elements in a mesh on the local PET. The arguments are:

mesh The mesh

elementCount The number of elements on this PET.

20.3.13 ESMC_MeshGetNodeCount - Get the number of nodes in a Mesh on the current PET

INTERFACE:

int ESMC_MeshGetNodeCount(

ESMC_Mesh mesh, // in

int *nodeCount // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of nodes in a mesh on the local PET. The arguments are:

mesh The mesh

nodeCount The number of nodes on this PET.

20.3.14 ESMC_MeshGetOwnedElementCount - Get the number of elements in a Mesh owned by the current

PET

INTERFACE:

int ESMC_MeshGetOwnedElementCount(

ESMC_Mesh mesh, // in

int *elementCount // out

);

RETURN VALUE:
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Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of elements in a mesh owned by the local PET. This number will be equal or less than the local
element count. The arguments are:

mesh The mesh

elementCount The number of elements owned by this PET.

20.3.15 ESMC_MeshGetOwnedNodeCount - Get the number of nodes in a Mesh owned by the current PET

INTERFACE:

int ESMC_MeshGetOwnedNodeCount(

ESMC_Mesh mesh, // in

int *nodeCount // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of nodes in a mesh owned by the local PET. This number will be equal or less than the local node
count. The arguments are:

mesh The mesh

nodeCount The number of nodes owned by this PET.

21 XGrid Class

21.1 Description

An exchange grid represents the 2D boundary layer usually between the atmosphere on one side and ocean and land

on the other in an Earth system model. There are dynamical and thermodynamical processes on either side of the

boundary layer and on the boundary layer itself. The boundary layer exchanges fluxes from either side and adjusts

boundary conditions for the model components involved. For climate modeling, it is critical that the fluxes transferred

by the boundary layer are conservative.

The ESMF exchange grid is implemented as the ESMC_XGrid class. Internally it’s represented by a collection of the

intersected cells between atmosphere and ocean/land[2] grids. These polygonal cells can have irregular shapes and

can be broken down into triangles facilitating a finite element approach.
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Through the C API there is one way to create an ESMC_XGrid object from user supplied information. The

ESMC_XGrid takes two lists of ESMC_Grid or ESMC_Mesh that represent the model component grids on either

side of the exchange grid. From the two lists of ESMC_Grid or ESMC_Mesh, information required for flux exchange

calculation between any pair of the model components from either side of the exchange grid is computed. In addition,

the internal representation of the ESMC_XGrid is computed and can be optionally stored as an ESMC_Mesh. This

internal representation is the collection of the intersected polygonal cells as a result of merged ESMC_Meshes from

both sides of the exchange grid. ESMC_Field can be created on the ESMC_XGrid and used for weight genera-

tion and regridding as the internal representation in the ESMC_XGrid has a complete geometrical description of the

exchange grid.

Once an ESMC_XGrid has been created, information describing it (e.g. cell areas, mesh representation, etc.) can be

retrieved from the object using a set of get calls (e.g. ESMC_XGridGetElementArea()). The full extent of these

can be found in the API section below.

21.2 Restrictions and Future Work

21.2.1 Restrictions and Future Work

1. CAUTION: Any Grid or Mesh pair picked from the A side and B side of the XGrid cannot point to the same

Grid or Mesh in memory on a local PET. This prevents Regrid from selecting the right source and destination

grid automatically to calculate the regridding routehandle. It’s okay for the Grid and Mesh to have identical

topological and geographical properties as long as they are stored in different memory.

21.3 Design and Implementation Notes

1. The XGrid class is implemented in Fortran, and as such is defined inside the framework by a XGrid derived

type and a set of subprograms (functions and subroutines) which operate on that derived type. The XGrid class

contains information needed to create Grid, Field, and communication routehandle.

2. XGrid follows the framework-wide convention of the unison creation and operation rule: All PETs which are

part of the currently executing VM must create the same XGrids at the same point in their execution. In addition

to the unison rule, XGrid creation also performs inter-PET communication within the current executing VM.

21.4 Class API

21.4.1 ESMC_XGridCreate - Create an XGrid

INTERFACE:

ESMC_XGrid ESMC_XGridCreate(

int sideAGridCount, ESMC_Grid *sideAGrid, // in

int sideAMeshCount, ESMC_Mesh *sideAMesh, // in

int sideBGridCount, ESMC_Grid *sideBGrid, // in

int sideBMeshCount, ESMC_Mesh *sideBMesh, // in

ESMC_InterArrayInt *sideAGridPriority, // in

ESMC_InterArrayInt *sideAMeshPriority, // in

ESMC_InterArrayInt *sideBGridPriority, // in

ESMC_InterArrayInt *sideBMeshPriority, // in
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ESMC_InterArrayInt *sideAMaskValues, // in

ESMC_InterArrayInt *sideBMaskValues, // in

int storeOverlay, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_XGrid object.

DESCRIPTION:

Create an ESMC_XGrid object from user supplied input: the list of Grids or Meshes on side A and side B, and
other optional arguments. A user can supply both Grids and Meshes on one side to create the XGrid. By default, the
Grids have a higher priority over Meshes but the order of priority can be adjusted by the optional GridPriority and
MeshPriority arguments. The priority order of Grids and Meshes can also be interleaved by rearranging the optional
GridPriority and MeshPriority arguments accordingly.

Sparse matrix multiplication coefficients are internally computed and uniquely determined by the Grids or Meshes
provided in sideA and sideB. User can supply a single ESMC_Grid or an array of ESMC_Grid on either side
of the ESMC_XGrid. For an array of ESMC_Grid or ESMC_Mesh in sideA or sideB, a merging process con-
catenates all the ESMC_Grids and ESMC_Meshes into a super mesh represented by ESMC_Mesh. The super mesh
is then used to compute the XGrid. Grid or Mesh objects in sideA and sideB arguments must have coordinates
defined for the corners of a Grid or Mesh cell. XGrid creation can be potentially memory expensive given the size of
the input Grid and Mesh objects. By default, the super mesh is not stored to reduce memory usage.

If sideA and sideB have a single Grid or Mesh object, it’s erroneous if the two Grids or Meshes are spatially
disjoint. It is also erroneous to specify a Grid or Mesh object in sideA or sideB that is spatially disjoint from the
ESMC_XGrid.

This call is collective across the current VM. For more details please refer to the description 21.1 of the XGrid class.

The arguments are:

sideAGridCount The number of Grids in the sideAGrid array.

[sideAGrid] Parametric 2D Grids on side A, for example, these Grids can be either Cartesian 2D or Spherical.

sideAMeshCount The number of Meshes in the sideAMesh array.

[sideAMesh] Parametric 2D Meshes on side A, for example, these Meshes can be either Cartesian 2D or Spherical.

sideBGridCount The number of Grids in the sideBGrid array.

[sideBGrid] Parametric 2D Grids on side B, for example, these Grids can be either Cartesian 2D or Spherical.

sideBMeshCount The number of Meshes in the sideBMesh array.

[sideBMesh] Parametric 2D Meshes on side B, for example, these Meshes can be either Cartesian 2D or Spherical.

[sideAGridPriority] Priority array of Grids on sideA during overlay generation. The priority arrays describe the
priorities of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Grid of the highest priority to the lowest priority.

[sideAMeshPriority] Priority array of Meshes on sideA during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.
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[sideBGridPriority] Priority of Grids on sideB during overlay generation The priority arrays describe the priorities
of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the order from
the Grid of the highest priority to the lowest priority.

[sideBMeshPriority] Priority array of Meshes on sideB during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.

[sideAMaskValues] Mask information can be set in the Grid (see 19.1.8) or Mesh upon which the Field is built. The
sideAMaskValues argument specifies the values in that mask information which indicate a point should be
masked out. In other words, a location is masked if and only if the value for that location in the mask information
matches one of the values listed in sideAMaskValues. If sideAMaskValues is not specified, no masking
on side A will occur.

[sideBMaskValues] Mask information can be set in the Grid (see 19.1.8) or Mesh upon which the Field is built. The
sideBMaskValues argument specifies the values in that mask information which indicate a point should be
masked out. In other words, a location is masked if and only if the value for that location in the mask information
matches one of the values listed in sideBMaskValues. If sideBMaskValues is not specified, no masking
on side B will occur.

storeOverlay Setting the storeOverlay optional argument to 0. allows a user to bypass storage of the Mesh used
to represent the XGrid. Only a DistGrid is stored to allow Field to be built on the XGrid. If the temporary mesh
object is of interest, storeOverlay can be set to a value not equal to 0. so a user can retrieve it for future use.

[rc] Return code; equals ESMF_SUCCESS only if the ESMF_XGrid is created.

21.4.2 ESMC_XGridDestroy - Destroy a XGrid

INTERFACE:

int ESMC_XGridDestroy(

ESMC_XGrid *xgrid // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_XGrid. Return code; equals ESMF_SUCCESS if there are no
errors.

The arguments are:

xgrid Destroy contents of this ESMC_XGrid.
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21.4.3 ESMC_XGridGetSideAGridCount - Get the number of Grids on side A.

INTERFACE:

int ESMC_XGridGetSideAGridCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The number of Grids on side A.

DESCRIPTION:

Get the number of Grids on side A.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.4 ESMC_XGridGetSideAMeshCount - Get the number of Meshes on side A.

INTERFACE:

int ESMC_XGridGetSideAMeshCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The number of Meshes on side A.

DESCRIPTION:

Get the number of Meshes on side A.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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21.4.5 ESMC_XGridGetSideBGridCount - Get the number of Grids on side B.

INTERFACE:

int ESMC_XGridGetSideBGridCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The number of Grids on side B.

DESCRIPTION:

Get the number of Grids on side B.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.6 ESMC_XGridGetSideBMeshCount - Get the number of Meshes on side B.

INTERFACE:

int ESMC_XGridGetSideBMeshCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The number of Meshes on side B.

DESCRIPTION:

Get the number of Meshes on side B.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

113



21.4.7 ESMC_XGridGetDimCount - Get the dimension of the XGrid.

INTERFACE:

int ESMC_XGridGetDimCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The dimension of the XGrid.

DESCRIPTION:

Get the dimension of the XGrid.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.8 ESMC_XGridGetElementCount - Get the number of elements in the XGrid.

INTERFACE:

int ESMC_XGridGetElementCount(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The number of elements in the XGrid.

DESCRIPTION:

Get the number of elements in the XGrid.

The arguments are:

xgrid The XGrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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21.4.9 ESMC_XGridGetMesh - Get the Mesh representation of the XGrid.

INTERFACE:

ESMC_Mesh ESMC_XGridGetMesh(

ESMC_XGrid xgrid, // in

int *rc // out

);

RETURN VALUE:

The ESMC_Mesh object representing the XGrid.

DESCRIPTION:

Get the ESMC_Mesh object representing the XGrid.

The arguments are:

xgrid The xgrid from which to get the information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.10 ESMC_XGridGetElementArea - Get the area of elements in the XGrid.

INTERFACE:

void ESMC_XGridGetElementArea(

ESMC_XGrid xgrid, // in

ESMC_R8 *area, // out

int *rc // out

);

RETURN VALUE:

The number of elements in the XGrid.

DESCRIPTION:

Get the number of elements in the XGrid.

The arguments are:

xgrid The XGrid from which to get the information.

area An array to fill with element areas. The array must be allocated to size elementCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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21.4.11 ESMC_XGridGetElementCentroid - Get the centroid of elements in the XGrid.

INTERFACE:

void ESMC_XGridGetElementCentroid(

ESMC_XGrid xgrid, // in

ESMC_R8 *centroid, // out

int *rc // out

);

RETURN VALUE:

The number of elements in the XGrid.

DESCRIPTION:

Get the centroid for each element in the exchange grid.

The arguments are:

xgrid The XGrid from which to get the information.

centroid An array to fill with element centroids. The array must be allocated to size elementCount*dimCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.12 ESMC_XGridGetSparseMatA2X - Get the sparse matrix that goes from a side A grid to the exchange

grid.

INTERFACE:

void ESMC_XGridGetSparseMatA2X(

ESMC_XGrid xgrid, // in

int sideAIndex, // in

int *factorListCount, // out

double **factorList, // out

int **factorIndexList, // out

int *rc);

RETURN VALUE:

N/A

DESCRIPTION:

Get the sparse matrix that goes from a side A grid to the exchange grid.

The arguments are:
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xgrid The XGrid from which to get the information.

sideAIndex The 0 based index of the Grid/Mesh on side A to get the sparse matrix for. If a priority has been specified
for Grids and Meshes, then this index is in priority order. If no priority was specified, then the all the Grids are
first followed by all the Meshes in the order they were passed into the XGrid create call.

factorListCount The size of the sparse matrix.

factorList A pointer to the list of factors for the requested sparse matrix. The list is of size factorListCount.
To save space this is a pointer to the internal xgrid memory for this list. Don’t deallocate it.

factorIndexList A pointer to the list of indices for the requested sparse matrix. The list is of size
2*factorListCount. For each pair of entries in this array: entry 0 is the sequence index in the source
grid, and entry 1 is the sequence index in the destination grid. To save space this is a pointer to the internal xgrid
memory for this list. Don’t deallocate it.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.13 ESMC_XGridGetSparseMatA2X - Get the sparse matrix that goes from the exchange grid to a side

A grid.

INTERFACE:

void ESMC_XGridGetSparseMatX2A(

ESMC_XGrid xgrid, // in

int sideAIndex, // in

int *factorListCount, // out

double **factorList, // out

int **factorIndexList, // out

int *rc);

RETURN VALUE:

N/A

DESCRIPTION:

Get the sparse matrix that goes from the exchange grid to a side A grid.

The arguments are:

xgrid The XGrid from which to get the information.

sideAIndex The 0 based index of the Grid/Mesh on side A to get the sparse matrix for. If a priority has been specified
for Grids and Meshes, then this index is in priority order. If no priority was specified, then the all the Grids are
first followed by all the Meshes in the order they were passed into the XGrid create call.

factorListCount The size of the sparse matrix.

factorList A pointer to the list of factors for the requested sparse matrix. The list is of size factorListCount.
To save space this is a pointer to the internal xgrid memory for this list. Don’t deallocate it.
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factorIndexList A pointer to the list of indices for the requested sparse matrix. The list is of size
2*factorListCount. For each pair of entries in this array: entry 0 is the sequence index in the source
grid, and entry 1 is the sequence index in the destination grid. To save space this is a pointer to the internal xgrid
memory for this list. Don’t deallocate it.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.4.14 ESMC_XGridGetSparseMatB2X - Get the sparse matrix that goes from a side B grid to the exchange

grid.

INTERFACE:

void ESMC_XGridGetSparseMatB2X(

ESMC_XGrid xgrid, // in

int sideBIndex, // in

int *factorListCount, // out

double **factorList, // out

int **factorIndexList, // out

int *rc);

RETURN VALUE:

N/A

DESCRIPTION:

Get the sparse matrix that goes from a side B grid to the exchange grid.

The arguments are:

xgrid The XGrid from which to get the information.

sideBIndex The 0 based index of the Grid/Mesh on side B to get the sparse matrix for. If a priority has been specified
for Grids and Meshes, then this index is in priority order. If no priority was specified, then the all the Grids are
first followed by all the Meshes in the order they were passed into the XGrid create call.

factorListCount The size of the sparse matrix.

factorList A pointer to the list of factors for the requested sparse matrix. The list is of size factorListCount.
To save space this is a pointer to the internal xgrid memory for this list. Don’t deallocate it.

factorIndexList A pointer to the list of indices for the requested sparse matrix. The list is of size
2*factorListCount. For each pair of entries in this array: entry 0 is the sequence index in the source
grid, and entry 1 is the sequence index in the destination grid. To save space this is a pointer to the internal xgrid
memory for this list. Don’t deallocate it.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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21.4.15 ESMC_XGridGetSparseMatB2X - Get the sparse matrix that goes from the exchange grid to a side B

grid.

INTERFACE:

void ESMC_XGridGetSparseMatX2B(

ESMC_XGrid xgrid, // in

int sideBIndex, // in

int *factorListCount, // out

double **factorList, // out

int **factorIndexList, // out

int *rc);

RETURN VALUE:

N/A

DESCRIPTION:

Get the sparse matrix that goes from the exchange grid to a side B grid.

The arguments are:

xgrid The XGrid from which to get the information.

sideBIndex The 0 based index of the Grid/Mesh on side B to get the sparse matrix for. If a priority has been specified
for Grids and Meshes, then this index is in priority order. If no priority was specified, then the all the Grids are
first followed by all the Meshes in the order they were passed into the XGrid create call.

factorListCount The size of the sparse matrix.

factorList A pointer to the list of factors for the requested sparse matrix. The list is of size factorListCount.
To save space this is a pointer to the internal xgrid memory for this list. Don’t deallocate it.

factorIndexList A pointer to the list of indices for the requested sparse matrix. The list is of size
2*factorListCount. For each pair of entries in this array: entry 0 is the sequence index in the source
grid, and entry 1 is the sequence index in the destination grid. To save space this is a pointer to the internal xgrid
memory for this list. Don’t deallocate it.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22 DistGrid Class

22.1 Description

The ESMF DistGrid class sits on top of the DELayout class (not currently directly accessible through the ESMF C

API) and holds domain information in index space. A DistGrid object captures the index space topology and describes

its decomposition in terms of DEs. Combined with DELayout and VM the DistGrid defines the data distribution of a

domain decomposition across the computational resources of an ESMF Component.
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The global domain is defined as the union of logically rectangular (LR) sub-domains or tiles. The DistGrid create

methods allow the specification of such a multi-tile global domain and its decomposition into exclusive, DE-local LR

regions according to various degrees of user specified constraints. Complex index space topologies can be constructed

by specifying connection relationships between tiles during creation.

The DistGrid class holds domain information for all DEs. Each DE is associated with a local LR region. No overlap of

the regions is allowed. The DistGrid offers query methods that allow DE-local topology information to be extracted,

e.g. for the construction of halos by higher classes.

A DistGrid object only contains decomposable dimensions. The minimum rank for a DistGrid object is 1. A maximum

rank does not exist for DistGrid objects, however, ranks greater than 7 may lead to difficulties with respect to the

Fortran API of higher classes based on DistGrid. The rank of a DELayout object contained within a DistGrid object

must be equal to the DistGrid rank. Higher class objects that use the DistGrid, such as an Array object, may be of

different rank than the associated DistGrid object. The higher class object will hold the mapping information between

its dimensions and the DistGrid dimensions.

22.2 Class API

22.2.1 ESMC_DistGridCreate - Create a DistGrid

INTERFACE:

ESMC_DistGrid ESMC_DistGridCreate(

ESMC_InterArrayInt minIndexInterfaceArg, // in

ESMC_InterArrayInt maxIndexInterfaceArg, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_DistGrid object.

DESCRIPTION:

Create an ESMC_DistGrid from a single logically rectangular (LR) tile with default decomposition. The default
decomposition is deCount×1 × ... × 1, where deCount is the number of DEs in a default DELayout, equal to
petCount. This means that the default decomposition will be into as many DEs as there are PETs, with 1 DE per
PET.

The arguments are:

minIndex Global coordinate tuple of the lower corner of the tile.

maxIndex Global coordinate tuple of the upper corner of the tile.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.
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22.2.2 ESMC_DistGridDestroy - Destroy a DistGrid

INTERFACE:

int ESMC_DistGridDestroy(

ESMC_DistGrid *distgrid // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy an ESMC_DistGrid object.

The arguments are:

distgrid ESMC_DistGrid object to be destroyed.

22.2.3 ESMC_DistGridPrint - Print a DistGrid

INTERFACE:

int ESMC_DistGridPrint(

ESMC_DistGrid distgrid // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specified ESMC_DistGrid object.

The arguments are:

distgrid ESMC_DistGrid object to be destroyed.

23 RouteHandle Class

23.1 Description

The ESMF RouteHandle class provides a unified interface for all route-based communication methods across the Field,

FieldBundle, Array, and ArrayBundle classes. All route-based communication methods implement a pre-computation
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step, returning a RouteHandle, an execution step, and a release step. Typically the pre-computation, or Store() step

will be a lot more expensive (both in memory and time) than the execution step. The idea is that once precomputed,

a RouteHandle will be executed many times over during a model run, making the execution time a very performance

critical piece of code. In ESMF, Regridding, Redisting, and Haloing are implemented as route-based communication

methods. The following sections discuss the RouteHandle concepts that apply uniformly to all route-based communi-

cation methods, across all of the above mentioned classes.

23.2 Use and Examples

The user interacts with the RouteHandle class through the route-based communication methods of Field, FieldBundle,

Array, and ArrayBundle. The usage of these methods are described in detail under their respective class documentation

section. The following examples focus on the RouteHandle aspects common across classes and methods.

23.3 Restrictions and Future Work

• Non-blocking communication via the routesyncflag option is implemented for Fields and Arrays. It is not

available for FieldBundles and ArrayBundles. The user is advised to use the VMEpoch approach for all cases

to achive asynchronicity.

• The dynamic masking feature currently has the following limitations:

– Only available for ESMF_TYPEKIND_R8 and ESMF_TYPEKIND_R4 Fields and Arrays.

– Only available through the ESMF_FieldRegrid() and ESMF_ArraySMM() methods.

– Destination objects that have undistributed dimensions after any distributed dimension are not supported.

– No check is implemented that ensure the user-provided RouteHandle object is suitable for dynamic mask-

ing.

23.4 Design and Implementation Notes

Internally all route-based communication calls are implemented as sparse matrix multiplications. The precompute step

for all of the supported communication methods can be broken up into three steps:

1. Construction of the sparse matrix for the specific communication method.

2. Generation of the communication pattern according to the sparse matrix.

3. Encoding of the communication pattern for each participating PET in form of an XXE stream.

23.5 Class API

23.5.1 ESMC_RouteHandleCreateFromFile - Create a RouteHandle

INTERFACE:

ESMC_RouteHandle ESMC_RouteHandleCreateFromFile(

char *filename,

int *rc

);
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RETURN VALUE:

ESMC_RouteHandle

DESCRIPTION:

Create an ESMC_RouteHandle object.

The arguments are:

filename The file that describes the ESMC_RouteHandle object.

23.5.2 ESMC_RouteHandlePrint - Print a RouteHandle

INTERFACE:

int ESMC_RouteHandlePrint(

ESMC_RouteHandle rh // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specified ESMC_RouteHandle object.

The arguments are:

rh ESMC_RouteHandle object to be printed.

23.5.3 ESMC_RouteHandleWrite - Write a RouteHandle to file

INTERFACE:

int ESMC_RouteHandleWrite(

ESMC_RouteHandle rh, // in

char *filename // in

);

RETURN VALUE:
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Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Write ESMC_RouteHandle object to file to save regrid information for fast input for regridding operations during
runtime.

The arguments are:

rh ESMC_RouteHandle object to be printed.

filename The name of the file for writing the ESMC_RouteHandle object.
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Part V

Infrastructure: Utilities
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24 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assembling modeling applications.

The Time Management Library provides utilities for time and time interval representation, as well as a higher-level

utility, a clock, that controls model time stepping.

The ESMF Config class provides configuration management based on NASA DAO’s Inpak package, a collection of

methods for accessing files containing input parameters stored in an ASCII format.

The ESMF LogErr class consists of a method for writing error, warning, and informational messages to a default Log

file that is created during ESMF initialization.

The ESMF VM (Virtual Machine) class provides methods for querying information about a VM. A VM is a generic

representation of hardware and system software resources. There is exactly one VM object per ESMF Component,

providing the execution environment for the Component code. The VM class handles all resource management tasks

for the Component class and provides a description of the underlying configuration of the compute resources used by

a Component. In addition to resource description and management, the VM class offers the lowest level of ESMF

communication methods.
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25 Time Manager Utility

The ESMF Time Manager utility includes software for time and time interval representation, as well as model time

advancement. Since multi-component geophysical applications often require synchronization across the time manage-

ment schemes of the individual components, the Time Manager’s standard calendars and consistent time representation

promote component interoperability.

Key Features

Drift-free timekeeping through an integer-based internal time representation. Both integers and reals can be

specified at the interface.

Support for many calendar kinds.

Support for both concurrent and sequential modes of component execution.

25.1 Time Manager Classes

There are four ESMF classes that represent time concepts:

• Calendar A Calendar can be used to keep track of the date as an ESMF Gridded Component advances in time.

Standard calendars (such as Gregorian and 360-day) are supported.

• Time A Time represents a time instant in a particular calendar, such as November 28, 1964, at 7:00pm EST in

the Gregorian calendar. The Time class can be used to represent the start and stop time of a time integration.

• TimeInterval TimeIntervals represent a period of time, such as 3 hours. Time steps can be represented using

TimeIntervals.

• Clock Clocks collect the parameters and methods used for model time advancement into a convenient package.

A Clock can be queried for quantities such as current simulation time and time step. Clock methods include

incrementing the current time, and printing the its contents.

25.2 Calendar

The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.

360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See Section 26.1 for more details on supported standard calendars, and how to create a customized ESMF Calendar.
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25.3 Time Instants and TimeIntervals

TimeIntervals and Time instants (simply called Times) are the computational building blocks of the Time Manager

utility. Times support different queries for values of individual Time components such as year and hour. See Sec-

tions 27.1 and 28.1, respectively, for use of Times and TimeIntervals.

25.4 Clocks

It is useful to identify a higher-level concept to repeatedly step a Time forward by a TimeInterval. We refer to this

capability as a Clock, and include in its required features the ability to store the start and stop times of a model run,

and to query the value of quantities such as the current time and the number of time steps taken. Applications may

contain temporary or multiple Clocks. Section 29.1 describes the use of Clocks in detail.
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26 Calendar Class

26.1 Description

The Calendar class represents the standard calendars used in geophysical modeling: Gregorian, Julian, Julian Day,

Modified Julian Day, no-leap, 360-day, and no-calendar. Brief descriptions are provided for each calendar below.

26.2 Constants

26.2.1 ESMC_CALKIND

DESCRIPTION:

Supported calendar kinds.

The type of this flag is:

type(ESMF_CalKind_Flag)

The valid values are:

ESMC_CALKIND_360DAY Valid range: machine limits

In the 360-day calendar, there are 12 months, each of which has 30 days. Like the no-leap calendar, this is a

simple approximation to the Gregorian calendar sometimes used by modelers.

ESMC_CALKIND_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914

The Gregorian calendar is the calendar currently in use throughout Western countries. Named after Pope Gre-

gory XIII, it is a minor correction to the older Julian calendar. In the Gregorian calendar every fourth year is a

leap year in which February has 29 and not 28 days; however, years divisible by 100 are not leap years unless

they are also divisible by 400. As in the Julian calendar, days begin at midnight.

ESMC_CALKIND_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333

The Julian calendar was introduced by Julius Caesar in 46 B.C., and reached its final form in 4 A.D. The Julian

calendar differs from the Gregorian only in the determination of leap years, lacking the correction for years

divisible by 100 and 400 in the Gregorian calendar. In the Julian calendar, any year is a leap year if divisible by

4. Days are considered to begin at midnight.

ESMC_CALKIND_JULIANDAY Valid range: +/- 1x1014

Julian days simply enumerate the days and fraction of a day which have elapsed since the start of the Julian

era, defined as beginning at noon on Monday, 1st January of year 4713 B.C. in the Julian calendar. Julian days,

unlike the dates in the Julian and Gregorian calendars, begin at noon.

ESMC_CALKIND_MODJULIANDAY Valid range: +/- 1x1014

The Modified Julian Day (MJD) was introduced by space scientists in the late 1950’s. It is defined as an offset

from the Julian Day (JD):

MJD = JD - 2400000.5

The half day is subtracted so that the day starts at midnight.

ESMC_CALKIND_NOCALENDAR Valid range: machine limits

The no-calendar option simply tracks the elapsed model time in seconds.

ESMC_CALKIND_NOLEAP Valid range: machine limits

The no-leap calendar is the Gregorian calendar with no leap years - February is always assumed to have 28 days.

Modelers sometimes use this calendar as a simple, close approximation to the Gregorian calendar.
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26.3 Class API

26.3.1 ESMC_CalendarCreate - Create a Calendar

INTERFACE:

ESMC_Calendar ESMC_CalendarCreate(

const char *name, // in

enum ESMC_CalKind_Flag calkindflag, // in

int *rc // out

);

RETURN VALUE:

Newly created ESMC_Calendar object.

DESCRIPTION:

Creates and sets a ESMC_Calendar object to the given built-in ESMC_CalKind_Flag.

The arguments are:

[name] The name for the newly created Calendar. If not specified, i.e. NULL, a default unique name will be gener-
ated: "CalendarNNN" where NNN is a unique sequence number from 001 to 999.

calkindflag The built-in ESMC_CalKind_Flag. Valid values are:
ESMC_CALKIND_360DAY,
ESMC_CALKIND_GREGORIAN,
ESMC_CALKIND_JULIAN,
ESMC_CALKIND_JULIANDAY,
ESMC_CALKIND_MODJULIANDAY,
ESMC_CALKIND_NOCALENDAR,
and ESMC_CALKIND_NOLEAP.
See Section 26.2 for a description of each calendar kind.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.3.2 ESMC_CalendarDestroy - Destroy a Calendar

INTERFACE:

int ESMC_CalendarDestroy(

ESMC_Calendar *calendar // inout

);

RETURN VALUE:
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Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_Calendar.

The arguments are:

calendar Destroy contents of this ESMC_Calendar.

26.3.3 ESMC_CalendarPrint - Print a Calendar

INTERFACE:

int ESMC_CalendarPrint(

ESMC_Calendar calendar // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out an ESMC_Calendar’s properties to stdio, in support of testing and debugging.

The arguments are:

calendar ESMC_Calendar object to be printed.
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27 Time Class

27.1 Description

A Time represents a specific point in time.

There are Time methods defined for setting and getting a Time.

A Time that is specified in hours does not need to be associated with a standard calendar; use

ESMC_CALKIND_NOCALENDAR. A Time whose specification includes time units of a year must be associated

with a standard calendar. The ESMF representation of a calendar, the Calendar class, is described in Section 26.1.

The ESMC_TimeSet method is used to initialize a Time as well as associate it with a Calendar. If a Time method is

invoked in which a Calendar is necessary and one has not been set, the ESMF method will return an error condition.

In the ESMF the TimeInterval class is used to represent time periods. This class is frequently used in combination

with the Time class. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.

27.2 Class API

27.2.1 ESMC_TimeGet - Get a Time value

INTERFACE:

int ESMC_TimeGet(

ESMC_Time time, // in

ESMC_I4 *yy, // out

ESMC_I4 *h, // out

ESMC_Calendar *calendar, // out

enum ESMC_CalKind_Flag *calkindflag, // out

int *timeZone // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of an ESMC_Time in units specified by the user.

The arguments are:

time ESMC_Time object to be queried.

[yy] Integer year (>= 32-bit).

[h] Integer hours.

[calendar] Associated ESMC_Calendar.

[calkindflag] Associated ESMC_CalKind_Flag.
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27.2.2 ESMC_TimePrint - Print a Time

INTERFACE:

int ESMC_TimePrint(

ESMC_Time time // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out an ESMC_Time’s properties to stdio, in support of testing and debugging.

The arguments are:

time ESMC_Time object to be printed.

27.2.3 ESMC_TimeSet - Initialize or set a Time

INTERFACE:

int ESMC_TimeSet(

ESMC_Time *time, // inout

ESMC_I4 yy, // in

ESMC_I4 h, // in

ESMC_Calendar calendar, // in

enum ESMC_CalKind_Flag calkindflag, // in

int timeZone // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Initializes an ESMC_Time with a set of user-specified units.

The arguments are:

time ESMC_Time object to initialize or set.
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yy Integer year (>= 32-bit).

h Integer hours.

calendar Associated ESMC_Calendar. If not created, defaults to calendar ESMC_CALKIND_NOCALENDAR or
default specified in ESMC_Initialize(). If created, has precedence over calkindflag below.

calkindflag Specifies associated ESMC_Calendar if calendar argument above not created. More convenient way
of specifying a built-in calendar kind.
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28 TimeInterval Class

28.1 Description

A TimeInterval represents a period between time instants. It can be either positive or negative.

There are TimeInterval methods defined for setting and getting a TimeInterval, for printing the contents of a TimeIn-

terval.

The class used to represent time instants in ESMF is Time, and this class is frequently used in operations along with

TimeIntervals. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.

TimeIntervals are used by other parts of the ESMF timekeeping system, such as Clocks; see Section 29.1.

28.2 Class API

28.2.1 ESMC_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

int ESMC_TimeIntervalGet(

ESMC_TimeInterval timeinterval, // in

ESMC_I8 *s_i8, // out

ESMC_R8 *h_r8 // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of an ESMC_TimeInteval in units specified by the user.

The arguments are:

timeinterval ESMC_TimeInterval object to be queried.

[s_i8] Integer seconds (large, >= 64-bit).

[h_r8] Double precision hours.

28.2.2 ESMC_TimeIntervalPrint - Print a TimeInterval

INTERFACE:
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int ESMC_TimeIntervalPrint(

ESMC_TimeInterval timeinterval // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out an ESMC_TimeInterval’s properties to stdio, in support of testing and debugging.

The arguments are:

timeinterval ESMC_TimeInterval object to be printed.

28.2.3 ESMC_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

int ESMC_TimeIntervalSet(

ESMC_TimeInterval *timeinterval, // inout

ESMC_I4 h // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Sets the value of the ESMC_TimeInterval in units specified by the user.

The arguments are:

timeinterval ESMC_TimeInterval object to initialize or set.

h Integer hours.
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29 Clock Class

29.1 Description

The Clock class advances model time and tracks its associated date on a specified Calendar. It stores start time, stop

time, current time, and a time step.

There are methods for setting and getting the Times associated with a Clock. Methods are defined for advancing the

Clock’s current time and printing a Clock’s contents.

29.2 Class API

29.2.1 ESMC_ClockAdvance - Advance a Clock’s current time by one time step

INTERFACE:

int ESMC_ClockAdvance(

ESMC_Clock clock // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Advances the ESMC_Clock’s current time by one time step.

The arguments are:

clock ESMC_Clock object to be advanced.

29.2.2 ESMC_ClockCreate - Create a Clock

INTERFACE:

ESMC_Clock ESMC_ClockCreate(

const char *name, // in

ESMC_TimeInterval timeStep, // in

ESMC_Time startTime, // in

ESMC_Time stopTime, // in

int *rc // out

);
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RETURN VALUE:

Newly created ESMC_Clock object.

DESCRIPTION:

Creates and sets the initial values in a new ESMC_Clock object.

The arguments are:

[name] The name for the newly created Clock. If not specified, i.e. NULL, a default unique name will be generated:
"ClockNNN" where NNN is a unique sequence number from 001 to 999.

timeStep The ESMC_Clock’s time step interval, which can be positive or negative.

startTime The ESMC_Clock’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTime is specified; see below.

stopTime The ESMC_Clock’s stopping time. Can be greater than or less than the startTime, depending on a positive
or negative timeStep, respectively.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.2.3 ESMC_ClockDestroy - Destroy a Clock

INTERFACE:

int ESMC_ClockDestroy(

ESMC_Clock *clock // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with this ESMC_Clock.

The arguments are:

clock Destroy contents of this ESMC_Clock.
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29.2.4 ESMC_ClockGet - Get a Clock’s properties

INTERFACE:

int ESMC_ClockGet(

ESMC_Clock clock, // in

ESMC_TimeInterval *currSimTime, // out

ESMC_I8 *advanceCount // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets one or more of the properties of an ESMC_Clock.

The arguments are:

clock ESMC_Clock object to be queried.

[currSimTime] The current simulation time.

[advanceCount] The number of times the ESMC_Clock has been advanced.

29.2.5 ESMC_ClockPrint - Print the contents of a Clock

INTERFACE:

int ESMC_ClockPrint(

ESMC_Clock clock // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out an ESMC_Clock’s properties to stdio, in support of testing and debugging.

The arguments are:

clock ESMC_Clock object to be printed.
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30 Config Class

30.1 Description

ESMF Configuration Management is based on NASA DAO’s Inpak 90 package, a Fortran 90 collection of rou-

tines/functions for accessing Resource Files in ASCII format.The package is optimized for minimizing formatted I/O,

performing all of its string operations in memory using Fortran intrinsic functions.

30.1.1 Package history

The ESMF Configuration Management Package was evolved by Leonid Zaslavsky and Arlindo da Silva from Ipack90

package created by Arlindo da Silva at NASA DAO.

Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. In June of 1987 Arlindo da Silva wrote Inpak77 using For-

tran 77 string functions; Inpak 77 is a vastly simplified IOPACK, but has its own goodies not found in IOPACK. Inpak

90 removes some obsolete functionality in Inpak77, and parses the whole resource file in memory for performance.

30.2 Class API

30.2.1 ESMC_ConfigCreate - Create a Config object

INTERFACE:

ESMC_Config ESMC_ConfigCreate(

int* rc // out

);

RETURN VALUE:

ESMC_Config* to newly allocated ESMC_Config

DESCRIPTION:

Creates an ESMC_Config for use in subsequent calls.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

30.2.2 ESMC_ConfigDestroy - Destroy a Config object

INTERFACE:

140



int ESMC_ConfigDestroy(

ESMC_Config* config // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroys the config object.

The arguments are:

config Already created ESMC_Config object to destroy.

30.2.3 ESMC_ConfigCreate - Create a Config object from a section of an existing Config object

INTERFACE:

ESMC_Config ESMC_ConfigCreateFromSection(

ESMC_Config config, // in

const char* olabel, // in

const char* clabel, // in

int* rc // out

);

RETURN VALUE:

ESMC_Config* to newly allocated ESMC_Config

DESCRIPTION:

Instantiates an ESMC_Config object from a section of an existing ESMC_Config object delimited by openlabel
and closelabel. An error is returned if neither of the input labels is found in input config.

Note that a section is intended as the content of a given ESMC_Config object delimited by two distinct labels. Such
content, as well as each of the surrounding labels, are still within the scope of the parent ESMC_Config object.
Therefore, including in a section labels used outside that section should be done carefully to prevent parsing conflicts.

The arguments are:

config The input ESMC_Config object.

openlabel Label marking the beginning of a section in config.

closelabel Label marking the end of a section in config.
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30.2.4 ESMC_ConfigFindLabel - Find a label

INTERFACE:

int ESMC_ConfigFindLabel(

ESMC_Config config, // in

const char* label, // in

int *isPresent // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

If label not found, and the {\tt isPresent} pointer is {\tt NULL},

an error will be returned.

DESCRIPTION:

Finds the label (key) in the config file.

Since the search is done by looking for a word in the whole resource file, it is important to use special conventions to
distinguish labels from other words in the resource files. The DAO convention is to finish line labels by : and table
labels by ::.

The arguments are:

config Already created ESMC_Config object.

label Identifying label.

[isPresent] Label presence flag. (optional). If non-NULL, the target is set to 1 when the label is found; otherwise set
to 0.

30.2.5 ESMC_ConfigFindNextLabel - Find a label

INTERFACE:

int ESMC_ConfigFindNextLabel(

ESMC_Config config, // in

const char* label, // in

int *isPresent // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

If label not found, and the {\tt isPresent} pointer is {\tt NULL},

an error will be returned.
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DESCRIPTION:

Finds the label (key) string in the config object, starting from the current position pointer.

This method is equivalent to ESMC_ConfigFindLabel, but the search is performed starting from the current
position pointer.

The arguments are:

config Already created ESMC_Config object.

label Identifying label.

isPresent If non-NULL, the address specified is given a value of 1 if the label is found, and 0 when the label is not
found.

30.2.6 ESMC_ConfigGetDim - Get table sizes

INTERFACE:

int ESMC_ConfigGetDim(

ESMC_Config config, // in

int* lineCount, // out

int* columnCount, // out

... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Returns the number of lines in the table in lineCount and the maximum number of words in a table line in
columnCount.

The arguments are:

config Already created ESMC_Config object.

lineCount Returned number of lines in the table.

columnCount Returned maximum number of words in a table line.

[label] Identifying label (optional).

Due to this method accepting optional arguments, the final argument must be ESMC_ArgLast.
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30.2.7 ESMC_ConfigGetLen - Get the length of the line in words

INTERFACE:

int ESMC_ConfigGetLen(

ESMC_Config config, // in

int* wordCount, // out

... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the length of the line in words by counting words disregarding types. Returns the word count as an integer.

The arguments are:

config Already created ESMC_Config object.

wordCount Returned number of words in the line.

[label] Identifying label. If not specified, use the current line (optional).

Due to this method accepting optional arguments, the final argument must be ESMC_ArgLast.

30.2.8 ESMC_ConfigLoadFile - Load resource file into memory

INTERFACE:

int ESMC_ConfigLoadFile(

ESMC_Config config, // in

const char* file, // in

... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Resource file with filename is loaded into memory.

The arguments are:
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config Already created ESMC_Config object.

file Configuration file name.

[delayout] ESMC_DELayout associated with this config object. **NOTE: This argument is not currently sup-
ported.

[unique] If specified as true, uniqueness of labels are checked and error code set if duplicates found (optional).

Due to this method accepting optional arguments, the final argument must be ESMC_ArgLast.

30.2.9 ESMC_ConfigNextLine - Find next line

INTERFACE:

int ESMC_ConfigNextLine(

ESMC_Config config, // in

int *tableEnd // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Selects the next line (for tables).

The arguments are:

config Already created ESMC_Config object.

[tableEnd] End of table mark (::) found flag. Returns 1 when found, and 0 when not found.

30.2.10 ESMC_ConfigPrint - Write content of config object to standard output

INTERFACE:

int ESMC_ConfigPrint(

ESMC_Config config // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Write content of a ESMC_Config object to standard output.

The arguments are:

config Already created ESMC_Config object.

30.2.11 ESMC_ConfigValidate - Validate a Config object

INTERFACE:

int ESMC_ConfigValidate(

ESMC_Config config, // in

... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

Equals ESMF_RC_ATTR_UNUSED if any unused attributes are found

with option "unusedAttributes" below.

DESCRIPTION:

Checks whether a config object is valid.

The arguments are:

config Already created ESMC_Config object.

[options] If none specified: simply check that the buffer is not full and the pointers are within range (op-
tional). "unusedAttributes" - Report to the default logfile all attributes not retrieved via a call to
ESMC_ConfigGetAttribute() or ESMC_ConfigGetChar(). The attribute name (label) will be
logged via ESMC_LogErr with the WARNING log message type. For an array-valued attribute, retrieving
at least one value via ESMC_ConfigGetAttribute() or ESMC_ConfigGetChar() constitutes being
"used."

Due to this method accepting optional arguments, the final argument must be ESMC_ArgLast.

31 Log Class

31.1 Description

The Log class consists of a variety of methods for writing error, warning, and informational messages to files. A

default Log is created at ESMF initialization.
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When ESMF is started with ESMC_Initialize(), multiple Log files will be created by PET number. The

PET number (in the format PETx.) will be prepended to each file name where x is the PET number. The

ESMC_LogWrite() call is used to issue messages to the log. As part of the call, a message can be tagged as

either an informational, warning, or error message.

The messages may be buffered within ESMF before appearing in the log. All messages will be properly flushed to the

log files when ESMC_Finalize() is called.

31.2 Constants

31.2.1 ESMC_LOGKIND

DESCRIPTION:

Specifies a single log file, multiple log files (one per PET), or no log files.

The valid values are:

ESMC_LOGKIND_SINGLE Use a single log file, combining messages from all of the PETs. Not supported on

some platforms.

ESMC_LOGKIND_MULTI Use multiple log files — one per PET.

ESMC_LOGKIND_NONE Do not issue messages to a log file.

31.2.2 ESMC_LOGMSG

DESCRIPTION:

Specifies a message level.

The valid values are:

ESMC_LOGMSG_INFO Informational messages

ESMC_LOGMSG_WARNING Warning messages

ESMC_LOGMSG_ERROR Error messages

ESMC_LOGMSG_TRACE Trace messages

ESMC_LOGMSG_DEBUG Debug messages

ESMC_LOGMSG_JSON JSON format messages

31.3 Class API

31.3.1 ESMC_LogWrite - Write an entry into the Log file

INTERFACE:
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int ESMC_LogWrite(

const char msg[], // in

int msgtype // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Write an entry into the Log file.

The arguments are:

msg The message to be written.

msgtype The message type. This flag is documented in section 31.2.2

31.3.2 ESMC_LogSet - Set Log properties

INTERFACE:

int ESMC_LogSet(

int flush // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Set Log properties.

The arguments are:

flush If set to ESMF_TRUE, flush log messages immediately, rather than buffering them. Default is to flush after 10
messages.

32 VM Class

32.1 Description

The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There

is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The

148



VM class handles all resource management tasks for the Component class and provides a description of the underlying

configuration of the compute resources used by a Component.

In addition to resource description and management, the VM class offers the lowest level of ESMF communication

methods. The VM communication calls are very similar to MPI. Data references in VM communication calls must

be provided as raw, language-specific, one-dimensional, contiguous data arrays. The similarity between VM and

MPI communication calls is striking and there are many equivalent point-to-point and collective communication calls.

However, unlike MPI, the VM communication calls support communication between threaded PETs in a completely

transparent fashion.

Many ESMF applications do not interact with the VM class directly very much. The resource management aspect

is wrapped completely transparent into the ESMF Component concept. Often the only reason that user code queries

a Component object for the associated VM object is to inquire about resource information, such as the localPet

or the petCount. Further, for most applications the use of higher level communication APIs, such as provided by

Array and Field, are much more convenient than using the low level VM communication calls.

The basic elements of a VM are called PETs, which stands for Persistent Execution Threads. These are equivalent to

OS threads with a lifetime of at least that of the associated component. All VM functionality is expressed in terms of

PETs. In the simplest, and most common case, a PET is equivalent to an MPI process. However, ESMF also supports

multi-threading, where multiple PETs run as Pthreads inside the same virtual address space (VAS).

32.2 Class API

32.2.1 ESMC_VMBarrier - block calling PETs until all PETS called

INTERFACE:

int ESMC_VMBarrier(

ESMC_VM vm // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Collective ESMC_VM communication call that blocks calling PET until all PETs of the VM context have issued the
call.

The arguments are:

vm Queried ESMC_VM object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.2.2 ESMC_VMBroadcast - Broadcast data across the VM

INTERFACE:
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int ESMC_VMBroadcast(ESMC_VM vm,

void *bcstData,

int count,

enum ESMC_TypeKind_Flag *typekind,

int rootPet);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Collective ESMC_VM communication call that broadcasts a contiguous data array from rootPet to all other PETs of
the ESMC_VM object.

This method is overloaded for: ESMC_TYPEKIND_I4, ESMC_TYPEKIND_I8, ESMC_TYPEKIND_R4,
ESMC_TYPEKIND_R8, ESMC_TYPEKIND_LOGICAL.

The arguments are:

vm ESMC_VM object.

bcstData Contiguous data array. On rootPet bcstData holds data that is to be broadcasted to all other PETs. On
all other PETs bcstData is used to receive the broadcasted data.

count Number of elements in bcstData. Must be the same on all PETs.

typekind The typekind of the data to be reduced. See section 34.18 for a list of valid typekind options.

rootPet PET that holds data that is being broadcast.

32.2.3 ESMC_VMGet - Get VM internals

INTERFACE:

int ESMC_VMGet(

ESMC_VM vm, // in

int *localPet, // out

int *petCount, // out

int *peCount, // out

MPI_Comm *mpiCommunicator, // out

int *pthreadsEnabledFlag, // out

int *openMPEnabledFlag // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
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DESCRIPTION:

Get internal information about the specified ESMC_VM object.

The arguments are:

vm Queried ESMC_VM object.

[localPet] Upon return this holds the id of the PET that issued this call.

[petCount] Upon return this holds the number of PETs in the specified ESMC_VM object.

[peCount] Upon return this holds the number of PEs referenced by the specified ESMC_VM object.

[mpiCommunicator] Upon return this holds the MPI intra-communicator used by the specified ESMC_VM object.
This communicator may be used for user-level MPI communications. It is recommended that the user duplicates
the communicator via MPI_Comm_Dup() in order to prevent any interference with ESMC communications.

[pthreadsEnabledFlag] A return value of ’1’ indicates that the ESMF library was compiled with Pthreads enabled.
A return value of ’0’ indicates that Pthreads are disabled in the ESMF library.

[openMPEnabledFlag] A return value of ’1’ indicates that the ESMF library was compiled with OpenMP enabled.
A return value of ’0’ indicates that OpenMP is disabled in the ESMF library.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.2.4 ESMC_VMGetCurrent - Get current VM

INTERFACE:

ESMC_VM ESMC_VMGetCurrent(

int *rc // out

);

RETURN VALUE:

VM object of the current execution context.

DESCRIPTION:

Get the ESMC_VM object of the current execution context. Calling ESMC_VMGetCurrent() within an
ESMC Component, will return the same VM object as ESMC_GridCompGet(..., vm=vm, ...) or
ESMC_CplCompGet(..., vm=vm, ...).

The main purpose of providing ESMC_VMGetCurrent() is to simplify ESMF adoption in legacy code. Specifi-
cally, code that uses MPI_COMM_WORLD deep within its calling tree can easily be modified to use the correct MPI
communicator of the current ESMF execution context. The advantage is that these modifications are very local, and
do not require wide reaching interface changes in the legacy code to pass down the ESMF component object, or the
MPI communicator.

The use of ESMC_VMGetCurrent() is strongly discouraged in newly written Component code. Instead, the ESMF
Component object should be used as the appropriate container of ESMF context information. This object should be
passed between the subroutines of a Component, and be queried for any Component specific information.

151



Outside of a Component context, i.e. within the driver context, the call to ESMC_VMGetCurrent() is identical to
ESMC_VMGetGlobal().

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.2.5 ESMC_VMGetGlobal - Get global VM

INTERFACE:

ESMC_VM ESMC_VMGetGlobal(

int *rc // out

);

RETURN VALUE:

VM object of the global execution context.

DESCRIPTION:

Get the global ESMC_VM object. This is the VM object that is created during ESMC_Initialize() and is
the ultimate parent of all VM objects in an ESMF application. It is identical to the VM object returned by
ESMC_Initialize(..., vm=vm, ...).

The ESMC_VMGetGlobal() call provides access to information about the global execution context via the global
VM. This call is necessary because ESMF does not create a global ESMF Component during ESMC_Initialize()
that could be queried for information about the global execution context of an ESMF application.

Usage of ESMC_VMGetGlobal() from within Component code is strongly discouraged. ESMF Components
should only access their own VM objects through Component methods. Global information, if required by the
Component user code, should be passed down to the Component from the driver through the Component calling
interface.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.2.6 ESMC_VMLogMemInfo - Log memory measurements to file

INTERFACE:

int ESMC_VMLogMemInfo(

const char *prefix // in

);
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RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Write memory info to the log file.

The arguments are:

prefix String value to indicate the location of the memory measurement

32.2.7 ESMC_VMPrint - Print a VM

INTERFACE:

int ESMC_VMPrint(

ESMC_VM vm // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specified ESMC_VM object.

The arguments are:

vm ESMC_VM object to be printed.

32.2.8 ESMC_VMReduce - Reduce data from across the VM

INTERFACE:

int ESMC_VMReduce(ESMC_VM vm,

void *sendData,

void *recvData,

int count,

enum ESMC_TypeKind_Flag *typekind,

enum ESMC_Reduce_Flag *reduceflag,

int rootPet);
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RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Collective ESMC_VM communication call that reduces a contiguous data array across the ESMC_VM object into a
contiguous data array of the same <type><kind>. The result array is returned on rootPet. Different reduction
operations can be specified.

This method is overloaded for: ESMC_TYPEKIND_I4, ESMC_TYPEKIND_I8, ESMC_TYPEKIND_R4,
ESMC_TYPEKIND_R8.

The arguments are:

vm ESMC_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. Only the recvData array specified by the rootPet will
be used by this method.

count Number of elements in sendData and recvData. Must be the same on all PETs.

typekind The typekind of the data to be reduced. See section 34.18 for a list of valid typekind options.

reduceflag Reduction operation. See section 34.14 for a list of valid reduce operations.

rootPet PET on which reduced data is returned.

33 Profiling and Tracing

33.1 Description

33.1.1 Profiling

ESMF’s built in profiling capability collects runtime statistics of an executing ESMF application through both auto-

matic and manual code instrumentation. Timing information for all phases of all ESMF components executing in an

application can be automatically collected using the ESMF_RUNTIME_PROFILE environment variable (see below

for settings). Additionally, arbitrary user-defined code regions can be timed by manually instrumenting code with

special API calls. Timing profiles of component phases and user-defined regions can be output in several different

formats:

• in text at the end of ESMF Log files

• in separate text file, one per PET (if the ESMF Logs are turned off)

• in a single summary text file that aggregates timings over multiple PETs

• in a binary format for import into the esmf-profiler for profile visualization
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The following table lists important environment variables that control aspects of ESMF profiling.

Environment Variable Description Example Values

ESMF_RUNTIME_PROFILE Enable/disables all profiling functions ON or OFF

ESMF_RUNTIME_PROFILE_PETLIST Limits profiling to an explicit list of PETs “0-9 50 99”

ESMF_RUNTIME_PROFILE_OUTPUT Controls output format of profiles; multiple can be speci-

fied in a space separated list

TEXT, SUMMARY, BINARY

33.1.2 Tracing

Whereas profiling collects summary information from an application, tracing records a more detailed set of events for

later analysis. Trace analysis can be used to understand what happened during a program’s execution and is often used

for diagnosing problems, debugging, and performance analysis.

ESMF has a built-in tracing capability that records events into special binary log files. Unlike log files written by the

ESMF_Log class, which are primarily for human consumption (see Section 31.1), the trace output files are recorded

in a compact binary representation and are processed by tools to produce various analyses. ESMF event streams are

recorded in the Common Trace Format (CTF). CTF traces include one or more event streams, as well as a metadata

file describing the events in the streams.

Several tools are available for reading in the CTF traces output by ESMF. Of the tools listed below, the first one is

designed specifically for analyzing ESMF applications and the second two are general purpose tools for working with

all CTF traces.

• esmf-profiler is a tool that ingests traces from an ESMF application and generates performance profile plots.

• TraceCompass is a general purpose tool for reading, analyzing, and visualizing traces.

• Babeltrace is a command-line tool and library for trace conversion that can read and write CTF traces. Python

bindings are available to open CTF traces are iterate through events.

Events that can be captured by the ESMF tracer include the following. Events are recorded with a high-precision

timestamp to allow timing analyses.

phase_enter indicates entry into an initialize, run, or finalize ESMF component routine

phase_exit indicates exit from an initialize, run, or finalize ESMF component routine

region_enter indicates entry into a user-defined code region

region_exit indicates exit from a user-defined code region

The following table lists important environment variables that control aspects of ESMF tracing.

Environment Variable Description Example Values

ESMF_RUNTIME_TRACE Enable/disables all tracing functions ON or OFF

ESMF_RUNTIME_TRACE_CLOCK Sets the type of clock for timestamping events (see Sec-

tion ??).

REALTIME or MONOTONIC

MONOTONIC_SYNC

ESMF_RUNTIME_TRACE_PETLIST Limits tracing to an explicit list of PETs “0-9 50 99”

ESMF_RUNTIME_TRACE_COMPONENT Enables/disable tracing of Component phase_enter and

phase_exit events

ON or OFF

ESMF_RUNTIME_TRACE_FLUSH Controls frequency of event stream flushing to file DEFAULT or EAGER
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33.2 Restrictions and Future Work

1. Limited types of trace events. Currently only a few trace event types are available. The tracer may be extended

in the future to record additional types of events.

2. MPI call profing not available for statically linked executables on Darwin. Currently the linker on Darwin

systems does not support the wrapping of symbols during static linking. In order to access MPI call profiling on

Darwin, executables should be linked dynamically in combination with the procedure described in section ??.

33.3 Class API

33.3.1 ESMC_TraceRegionEnter - Enter a trace region

INTERFACE:

int ESMC_TraceRegionEnter(

const char* name // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Enter a named trace region.

The arguments are:

name Name of the trace region.

33.3.2 ESMC_TraceRegionExit - Exit a trace region

INTERFACE:

int ESMC_TraceRegionExit(

const char* name // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Exit a named trace region.

The arguments are:
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name Name of the trace region.
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Part VII

Appendices

34 Appendix A: Master List of Constants

34.1 ESMC_CALKIND

This flag is documented in section 26.2.1.

34.2 ESMC_COORDSYS

This flag is documented in section 19.2.1.

34.3 ESMC_DECOMP

DESCRIPTION:

Indicates how DistGrid elements are decomposed over DEs.

The type of this flag is:

type(ESMC_Decomp_Flag)

The valid values are:

ESMC_DECOMP_BALANCED Decompose elements as balanced as possible across DEs. The maximum differ-

ence in number of elements per DE is 1, with the extra elements on the lower DEs.

ESMC_DECOMP_CYCLIC Decompose elements cyclically across DEs.

ESMC_DECOMP_RESTFIRST Divide elements over DEs. Assign the rest of this division to the first DE.

ESMC_DECOMP_RESTLAST Divide elements over DEs. Assign the rest of this division to the last DE.

ESMC_DECOMP_SYMMEDGEMAX Decompose elements across the DEs in a symmetric fashion. Start with the

maximum number of elements at the two edge DEs, and assign a decending number of elements to the DEs as

the center of the decomposition is approached from both sides.

subsection(ESMC_ExtrapMethod_Flag) DESCRIPTION:

Specify which extrapolation method to use on unmapped destination points after regridding.

The type of this flag is:

type(ESMC_ExtrapMethod_Flag)

The valid values are:

ESMC_EXTRAPMETHOD_NONE Indicates that no extrapolation should be done.
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ESMC_EXTRAPMETHOD_NEAREST_STOD Inverse distance weighted average. Here the value of a destination

point is the weighted average of the closest N source points. The weight is the reciprocal of the distance of the

source point from the destination point raised to a power P. All the weights contributing to one destination point

are normalized so that they sum to 1.0. The user can choose N and P when using this method, but defaults are

also provided.

ESMC_EXTRAPMETHOD_NEAREST_IDAVG Nearest source to destination. Here each destination point is

mapped to the closest source point. A given source point may go to multiple destination points, but no des-

tination point will receive input from more than one source point.

34.4 ESMC_FILEFORMAT

This flag is documented in section 19.2.6.

subsection(ESMC_FileMode_Flag) DESCRIPTION:

Specify which mode to use when writing a weight file.

The type of this flag is:

type(ESMC_FileMode_Flag)

The valid values are:

ESMC_FILEMODE_BASIC Indicates that only the factorList and factorIndexList should be written.

ESMC_FILEMODE_WITHAUX Indicates that grid center coordinates should also be written.

34.5 ESMC_GRIDITEM

This flag is documented in section 19.2.2.

34.6 ESMC_GRIDSTATUS

This flag is documented in section 19.2.3.

34.7 ESMC_INDEX

DESCRIPTION:

Indicates whether index is local (per DE) or global (per object).

The type of this flag is:

type(ESMC_IndexFlag)

The valid values are:

ESMC_INDEX_DELOCAL Indicates that DE-local index space starts at lower bound 1 for each DE.

ESMC_INDEX_GLOBAL Indicates that global indices are used. This means that DE-local index space starts at the

global lower bound for each DE.

ESMC_INDEX_USER Indicates that the DE-local index bounds are explicitly set by the user.
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34.8 ESMC_LINETYPE

DESCRIPTION:

This argument allows the user to select the path of the line which connects two points on the surface of a sphere. This

in turn controls the path along which distances are calculated and the shape of the edges that make up a cell.

The type of this flag is:

type(ESMC_LineType_Flag)

The valid values are:

ESMC_LINETYPE_CART Cartesian line. When this option is specified distances are calculated

in a straight line through the 3D Cartesian space in which the sphere is embedded. Cells

are approximated by 3D planes bounded by 3D Cartesian lines between their corner ver-

tices. When calculating regrid weights, this line type is currently the default for the follow-

ing regrid methods: ESMC_REGRIDMETHOD_BILINEAR, ESMC_REGRIDMETHOD_PATCH,

ESMC_REGRIDMETHOD_NEAREST_STOD, and ESMC_REGRIDMETHOD_NEAREST_DTOS.

ESMC_LINETYPE_GREAT_CIRCLE Great circle line. When this option is specified distances are calculated

along a great circle path (the shortest distance between two points on a sphere surface). Cells are bounded by

great circle paths between their corner vertices. When calculating regrid weights, this line type is currently the

default for the following regrid method: ESMC_REGRIDMETHOD_CONSERVE.

34.9 ESMC_LOGKIND

This flag is documented in section 31.2.1.

34.10 ESMC_LOGMSG

This flag is documented in section 31.2.2.

34.11 ESMC_MESHELEMTYPE

This flag is documented in section 20.2.1.

34.12 ESMF_METHOD

DESCRIPTION:

Specify standard ESMF Component method.

The type of this flag is:

type(ESMF_Method_Flag)

The valid values are:

ESMF_METHOD_FINALIZE Finalize method.

ESMF_METHOD_INITIALIZE Initialize method.
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ESMF_METHOD_READRESTART ReadRestart method.

ESMF_METHOD_RUN Run method.

ESMF_METHOD_WRITERESTART WriteRestart method.

34.13 ESMC_POLEKIND

This flag is documented in section 19.2.4.

34.14 ESMC_REDUCE

DESCRIPTION:

Indicates reduce operation.

The type of this flag is:

type(ESMC_Reduce_Flag)

The valid values are:

ESMC_REDUCE_SUM Use arithmetic sum to add all data elements.

ESMC_REDUCE_MIN Determine the minimum of all data elements.

ESMC_REDUCE_MAX Determine the maximum of all data elements.

34.15 ESMC_REGION

DESCRIPTION:

Specifies various regions in the data layout of an Array or Field object.

The type of this flag is:

type(ESMC_Region_Flag)

The valid values are:

ESMC_REGION_TOTAL Total allocated memory.

ESMC_REGION_SELECT Region of operation-specific elements.

ESMC_REGION_EMPTY The empty region contains no elements.

34.16 ESMC_REGRIDMETHOD

This flag is documented in section 16.2.1.

34.17 ESMC_STAGGERLOC

This flag is documented in section 19.2.5.
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34.18 ESMC_TYPEKIND

DESCRIPTION:

Named constants used to indicate type and kind combinations supported by the overloaded ESMC interfaces. The

corresponding Fortran kind-parameter constants are described in the ESMF_TYPEKIND section of Appendices of the

ESMF Fortran reference manual.

The type of these named constants is:

type(ESMC_TypeKind_Flag)

The named constants are:

ESMC_TYPEKIND_I1 Indicates 1 byte integer.

(Only available if ESMF was built with ESMF_NO_INTEGER_1_BYTE = FALSE. This is not the default.)

ESMC_TYPEKIND_I2 Indicates 2 byte integer.

(Only available if ESMF was built with ESMF_NO_INTEGER_2_BYTE = FALSE. This is not the default.)

ESMC_TYPEKIND_I4 Indicates 4 byte integer.

ESMC_TYPEKIND_I8 Indicates 8 byte integer.

ESMC_TYPEKIND_R4 Indicates 4 byte real.

ESMC_TYPEKIND_R8 Indicates 8 byte real.

34.19 ESMC_UNMAPPEDACTION

DESCRIPTION:

Indicates what action to take with respect to unmapped destination points and the entries of the sparse matrix that

correspond to these points.

The type of this flag is:

type(ESMC_UnmappedAction_Flag)

The valid values are:

ESMC_UNMAPPEDACTION_ERROR An error is issued when there exist destination points in a regridding op-

eration that are not mapped by corresponding source points.

ESMC_UNMAPPEDACTION_IGNORE Destination points which do not have corresponding source points are

ignored and zeros are used for the entries of the sparse matrix that is generated.

35 Appendix B: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (UML) notation for the class diagrams presented in this

Reference Manual. For more on UML, see references such as The Unified Modeling Language Reference Manual,

Rumbaugh et al, [3].
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ClassB

ClassA
Public class.  This is a class whose methods can be called by the user.  In Fortran

a public class is usually associated with a derived type and a corresponding

module that contains class methods and flags.

Private class.  This type of class does not have methods that should be called by

the user.  Like a public class it is usually associated with a derived type and a

corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an

association called aggregation.  Aggregation is a part-whole relationship that can

be read as “the class at the end of the line without the diamond is part of the class

at the end of the line with the diamond.”  The class that is the “part” can be

created and destroyed separately, and it is usually implemented as a reference

contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an

association called composition.  Composition is a part-whole relationship that is

similar to aggregation, but stronger.  It implies that that class that is the “part” is

created and destroyed by the class that is the “whole.”  It is often implemented as

a structure within part of the contiguous memory of a larger structure.

Multiplicity indicators at association line ends show how many classes on the one

end are associated with how many classes on the other end.

Field

0..1

0..n

This simple diagram shows that a public class called Field is associated with

another public class, called Grid.  The aggregation relationship indicated by the

unfilled diamond means that a Field contains a Grid, but that a Grid can be

created and destroyed outside of a Field.  The diagram multiplicities show that a

Field can be associated with no Grid or with one Grid, but that a single Grid can

be associated with any number of Fields.

1 1..n

Grid

Comp

GridComp

The triangle indicates an inheritance relationship.  Inheritance means that a child

class shares a set of characteristics (such as the same attributes or methods) with a

parent class.  The child can specialize and extend the behavior of the parent.  This

diagram shows a GridComp class that inherits from a more general Comp class.

36 Appendix C: ESMF Error Return Codes

The tables below show the possible error return codes for Fortran and C methods.

=====================================

Fortran Symmetric Return Codes 1-500

=====================================
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ESMF_SUCCESS 0

ESMF_RC_OBJ_BAD 1

ESMF_RC_OBJ_INIT 2

ESMF_RC_OBJ_CREATE 3

ESMF_RC_OBJ_COR 4

ESMF_RC_OBJ_WRONG 5

ESMF_RC_ARG_BAD 6

ESMF_RC_ARG_RANK 7

ESMF_RC_ARG_SIZE 8

ESMF_RC_ARG_VALUE 9

ESMF_RC_ARG_DUP 10

ESMF_RC_ARG_SAMETYPE 11

ESMF_RC_ARG_SAMECOMM 12

ESMF_RC_ARG_INCOMP 13

ESMF_RC_ARG_CORRUPT 14

ESMF_RC_ARG_WRONG 15

ESMF_RC_ARG_OUTOFRANGE 16

ESMF_RC_ARG_OPT 17

ESMF_RC_NOT_IMPL 18

ESMF_RC_FILE_OPEN 19

ESMF_RC_FILE_CREATE 20

ESMF_RC_FILE_READ 21

ESMF_RC_FILE_WRITE 22

ESMF_RC_FILE_UNEXPECTED 23

ESMF_RC_FILE_CLOSE 24

ESMF_RC_FILE_ACTIVE 25

ESMF_RC_PTR_NULL 26

ESMF_RC_PTR_BAD 27

ESMF_RC_PTR_NOTALLOC 28

ESMF_RC_PTR_ISALLOC 29

ESMF_RC_MEM 30

ESMF_RC_MEM_ALLOCATE 31

ESMF_RC_MEM_DEALLOCATE 32

ESMF_RC_MEMC 33

ESMF_RC_DUP_NAME 34

ESMF_RC_LONG_NAME 35

ESMF_RC_LONG_STR 36

ESMF_RC_COPY_FAIL 37

ESMF_RC_DIV_ZERO 38

ESMF_RC_CANNOT_GET 39

ESMF_RC_CANNOT_SET 40

ESMF_RC_NOT_FOUND 41

ESMF_RC_NOT_VALID 42

ESMF_RC_INTNRL_LIST 43

ESMF_RC_INTNRL_INCONS 44

ESMF_RC_INTNRL_BAD 45

ESMF_RC_SYS 46

ESMF_RC_BUSY 47

ESMF_RC_LIB 48

ESMF_RC_LIB_NOT_PRESENT 49

ESMF_RC_ATTR_UNUSED 50

ESMF_RC_OBJ_NOT_CREATED 51

ESMF_RC_OBJ_DELETED 52

ESMF_RC_NOT_SET 53
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ESMF_RC_VAL_WRONG 54

ESMF_RC_VAL_ERRBOUND 55

ESMF_RC_VAL_OUTOFRANGE 56

ESMF_RC_ATTR_NOTSET 57

ESMF_RC_ATTR_WRONGTYPE 58

ESMF_RC_ATTR_ITEMSOFF 59

ESMF_RC_ATTR_LINK 60

ESMF_RC_BUFFER_SHORT 61

ESMF_RC_TIMEOUT 62

ESMF_RC_FILE_EXISTS 63

ESMF_RC_FILE_NOTDIR 64

ESMF_RC_MOAB_ERROR 65

ESMF_RC_NOOP 66

ESMF_RC_NETCDF_ERROR 67

68-499 reserved for future Fortran symmetric return code definitions

=====================================

C/C++ Symmetric Return Codes 501-999

=====================================

ESMC_RC_OBJ_BAD 501

ESMC_RC_OBJ_INIT 502

ESMC_RC_OBJ_CREATE 503

ESMC_RC_OBJ_COR 504

ESMC_RC_OBJ_WRONG 505

ESMC_RC_ARG_BAD 506

ESMC_RC_ARG_RANK 507

ESMC_RC_ARG_SIZE 508

ESMC_RC_ARG_VALUE 509

ESMC_RC_ARG_DUP 510

ESMC_RC_ARG_SAMETYPE 511

ESMC_RC_ARG_SAMECOMM 512

ESMC_RC_ARG_INCOMP 513

ESMC_RC_ARG_CORRUPT 514

ESMC_RC_ARG_WRONG 515

ESMC_RC_ARG_OUTOFRANGE 516

ESMC_RC_ARG_OPT 517

ESMC_RC_NOT_IMPL 518

ESMC_RC_FILE_OPEN 519

ESMC_RC_FILE_CREATE 520

ESMC_RC_FILE_READ 521

ESMC_RC_FILE_WRITE 522

ESMC_RC_FILE_UNEXPECTED 523

ESMC_RC_FILE_CLOSE 524

ESMC_RC_FILE_ACTIVE 525

ESMC_RC_PTR_NULL 526

ESMC_RC_PTR_BAD 527

ESMC_RC_PTR_NOTALLOC 528

ESMC_RC_PTR_ISALLOC 529

ESMC_RC_MEM 530

ESMC_RC_MEM_ALLOCATE 531

ESMC_RC_MEM_DEALLOCATE 532

ESMC_RC_MEMC 533

ESMC_RC_DUP_NAME 534
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ESMC_RC_LONG_NAME 535

ESMC_RC_LONG_STR 536

ESMC_RC_COPY_FAIL 537

ESMC_RC_DIV_ZERO 538

ESMC_RC_CANNOT_GET 539

ESMC_RC_CANNOT_SET 540

ESMC_RC_NOT_FOUND 541

ESMC_RC_NOT_VALID 542

ESMC_RC_INTNRL_LIST 543

ESMC_RC_INTNRL_INCONS 544

ESMC_RC_INTNRL_BAD 545

ESMC_RC_SYS 546

ESMC_RC_BUSY 547

ESMC_RC_LIB 548

ESMC_RC_LIB_NOT_PRESENT 549

ESMC_RC_ATTR_UNUSED 550

ESMC_RC_OBJ_NOT_CREATED 551

ESMC_RC_OBJ_DELETED 552

ESMC_RC_NOT_SET 553

ESMC_RC_VAL_WRONG 554

ESMC_RC_VAL_ERRBOUND 555

ESMC_RC_VAL_OUTOFRANGE 556

ESMC_RC_ATTR_NOTSET 557

ESMC_RC_ATTR_WRONGTYPE 558

ESMC_RC_ATTR_ITEMSOFF 559

ESMC_RC_ATTR_LINK 560

ESMC_RC_BUFFER_SHORT 561

ESMC_RC_TIMEOUT 562

ESMC_RC_FILE_EXISTS 563

ESMC_RC_FILE_NOTDIR 564

ESMC_RC_MOAB_ERROR 565

ESMC_RC_NOOP 566

ESMC_RC_NETCDF_ERROR 567

568-999 reserved for future C/C++ symmetric return code definitions

=====================================

C/C++ Non-symmetric Return Codes 1000

=====================================

ESMC_RC_OPTARG_BAD 1000
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